Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Comput Chem ; 45(3): 150-158, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37698200

RESUMO

A pair of simulated left and right circularly polarized ultra-fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG-QTAIM) using third-generation eigenvector-trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C-C bond to external torsions as was the case for second-generation eigenvector-trajectories. The mechanical properties, in particular, the bond-flexing and bond-torsion were found to increase depending on the plane of the applied laser pulses. The bond-flexing and bond-torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally-dependent effects of the long-lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG-QTAIM investigations. Future planned investigations using ultra-fast circularly polarized lasers are briefly discussed.

2.
Faraday Discuss ; 251(0): 279-295, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38757419

RESUMO

A crossed beam velocity-map ion-imaging apparatus has been used to determine differential cross sections (DCSs) for the rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5) with CO2, as a function of both NO(A, v = 0, N') final state and the coincident final rotational energy of the CO2. The DCSs are dominated by forward-peaked scattering for all N', with significant rotational excitation of CO2, and a small backward scattered peak is also observed for all final N'. However, no rotational rainbow scattering is observed and there is no evidence for significant product rotational angular momentum polarization. New ab initio potential energy surface calculations at the PNO-CCSD(T)-F12b level of theory report strong attractive forces at long ranges with significant anisotropy relative to both NO and CO2. The absence of rotational rainbow scattering is consistent with removal of low-impact-parameter collisions via electronic quenching, in agreement with the literature quenching rates of NO(A) by CO2 and recent electronic structure calculations. We propose that high-impact-parameter collisions, that do not lead to quenching, experience strong anisotropic attractive forces that lead to significant rotational excitation in both NO and CO2, depolarizing product angular momentum while leading to forward and backward glory scattering.

3.
Phys Chem Chem Phys ; 26(23): 16589-16596, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814318

RESUMO

Isolated mixed-ligand complexes provide tractable model systems in which to study competitive and cooperative binding effects as well as controlled energy flow. Here, we report spectroscopic and isotopologue-selective infrared photofragmentation dynamics of mixed gas-phase Au(12/13CO)n(N2O)m+ complexes. The rich infrared action spectra, which are reproduced well using simulations of calculated lowest energy structures, clarify previous ambiguities in the assignment of vibrational bands, especially accidental coincidence of CO and N2O bands. The fragmentation dynamics exhibit the same unexpected behaviour as reported previously in which, once CO loss channels are energetically accessible, these dominate the fragmentation branching ratios, despite the much lower binding energy of N2O. We have investigated the dynamics computationally by considering anharmonic couplings between a relevant subset of normal modes involving both ligand stretch and intermolecular modes. Discrepancies between correlated and uncorrelated model fit to the ab initio potential energy curves are quantified using a Boltzmann sampled root mean squared deviation providing insight into efficiency of vibrational energy transfer between high frequency ligand stretches and the softer intermolecular modes which break during fragmentation.

4.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38814011

RESUMO

Using the recently developed multistate mapping approach to surface hopping (multistate MASH) method combined with SA(3)-CASSCF(12,12)/aug-cc-pVDZ electronic structure calculations, the gas-phase isotropic ultrafast electron diffraction (UED) of cyclobutanone is predicted and analyzed. After excitation into the n-3s Rydberg state (S2), cyclobutanone can relax through two S2/S1 conical intersections, one characterized by compression of the CO bond and the other by dissociation of the α-CC bond. Subsequent transfer into the ground state (S0) is then achieved via two additional S1/S0 conical intersections that lead to three reaction pathways: α ring-opening, ethene/ketene production, and CO liberation. The isotropic gas-phase UED signal is predicted from the multistate MASH simulations, allowing for a direct comparison to the experimental data. This work, which is a contribution to the cyclobutanone prediction challenge, facilitates the identification of the main photoproducts in the UED signal and thereby emphasizes the importance of dynamics simulations for the interpretation of ultrafast experiments.

5.
J Phys Chem A ; 127(30): 6251-6266, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37481777

RESUMO

A crossed molecular beam, velocity-map ion-imaging apparatus has been used to determine differential cross sections (DCSs), as a function of collider final internal energy, for rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5f1) with N2, CO, and O2, at average collision energies close to 800 cm-1. DCSs are strongly forward scattered for all three colliders for all observed NO(A) final rotational states, N'. For collisions with N2 and CO, the fraction of NO(A) that is scattered sideways and backward increases with increasing N', as does the internal rotational excitation of the colliders, with N2 having the highest internal excitation. In contrast, the DCSs for collisions with O2 are essentially only forward scattered, with little rotational excitation of the O2. The sideways and backward scattering expected from low-impact-parameter collisions, and the rotational excitation expected from the orientational dependence of published van der Waals potential energy surfaces (PESs), are absent in the observed NO(A) + O2 results. This is consistent with the removal of these short-range scattering trajectories via facile electronic quenching of NO(A) by O2, in agreement with the literature determination of the coupled NO-O2 PESs and the associated conical intersections. In contrast, collisions at high-impact parameter that predominately sample the attractive van der Waals minimum do not experience quenching and are inelastically forward scattered with low rotational excitation.

6.
J Phys Chem A ; 127(31): 6425-6436, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37494478

RESUMO

Excess energy redistribution dynamics operating in nitrobenzene under hexane and isopropanol solvation were investigated using ultrafast transient absorption spectroscopy (TAS) with a 267 nm pump and a 340-750 nm white light continuum probe. The use of a nonpolar hexane solvent provides a proxy to the gas-phase environment, and the findings are directly compared with a recent time-resolved photoelectron imaging (TRPEI) study on nitrobenzene using the same excitation wavelength [L. Saalbach et al., J. Phys. Chem. A 2021, 125, 7174-7184]. Of note is the observation of a 1/e lifetime of 3.5-6.7 ps in the TAS data that was absent in the TRPEI measurements. This is interpreted as a dynamical signature of the T2 state in nitrobenzene─analogous to observations in the related nitronaphthalene system, and additionally supported by previous quantum chemistry calculations. The discrepancy between the TAS and TRPEI measurements is discussed, with the overall findings providing an example of how different spectroscopic techniques can exhibit varying sensitivity to specific steps along the overall reaction coordinate connecting reactants to photoproducts.

7.
J Chem Phys ; 159(12)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-38127380

RESUMO

Excited state van der Waals (vdW) potential energy surfaces (PESs) of the NO A2Σ+ + CO2X1Σg+ system are thoroughly investigated using coupled cluster theory and complete active space perturbation theory to second order (CASPT2). First, it is shown that pair natural orbital coupled cluster singles and doubles with perturbative triples yields comparable accuracy compared to CCSD(T) for molecular properties and vdW-minima at a fraction of computational cost of the latter. Using this method in conjunction with highly diffuse basis sets and counterpoise correction for basis set superposition error, the PESs for different intermolecular orientations are investigated. These show numerous vdW-wells, interconnected for all geometries except one, with a maximum depth of up to 830 cm-1; considerably deeper than those on the ground state surface. Multi-reference effects are investigated with CASPT2 calculations. The long-range vdW-surfaces support recent experimental observations relating to rotational energy transfer due the anisotropy in the potentials.

8.
J Comput Chem ; 43(3): 206-214, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34787324

RESUMO

The effect of a static electric (E)-field and an unchirped and chirped laser pulse field on the cycl[3.3.3]azine molecule was investigated using next-generation quantum theory of atoms in molecules (NG-QTAIM). Despite the magnitude of the E-field of the laser pulses being an order of magnitude lower than for the static E-field, the variation of the energy gap between the lowest lying singlet (S1 ) and triplet (T1 ) excited states was orders of magnitude greater for the laser pulse than for the static E-field. Insights into the response of the electronic structure were captured by NG-QTAIM, where differences in the inverted singlet-triplet gap due to the laser pulses were significant larger compared to those induced by the static E-field. The response of the S1 and T1 excited states, as determined by NG-QTAIM, switched discontinuously between weak and strong chemical character for the static E-field. In contrast, the response to the laser pulses, determined by NG-QTAIM, is to induce a continuous range of chemical character, indicating the unique ability of the laser pulses to induce polarization effects in the form of "mixed" bond types. Our analysis demonstrates that NG-QTAIM is a useful tool for understanding the response to laser irradiation of the lowest-lying singlet S1 and triplet T1 excited states of emitters exhibiting thermally activated delayed fluorescence. The chirped laser pulse led to more frequent instances of the desired outcome of an inverted singlet-triplet gap than the unchirped pulse, indicating its usefulness as a tool to design more efficient organic light-emitting diode devices.

9.
Phys Chem Chem Phys ; 24(13): 7983-7993, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35311872

RESUMO

We characterize NO A2Σ+ + O2 X3Σg- van der Waals (vdW) Potential Energy Surface (PES) with RHF/RCCSD(T) and CASSCF/CASPT2 calculations. To do this, we first assess our computational setup to properly represent the individual molecular properties of O2 X3Σg-, NO X2Π, and NO A2Σ+. Specifically, we show that highly augmented basis sets are necessary to properly represent the NO A2Σ+ polarizability. Then, we optimize different vdW geometries, and provide BSSE corrected plots of the quartet vdW PES. The surfaces show a confined channel at a distance of approximately 6 Å with a depth of at least 20 cm-1 that we believe is caused by NO A2Σ+ hyper-polarizability. At shorter distances, the channel is connected to a vdW basin centered around the O-N O-O linear geometry with an inter-molecular separation of 4.3 Å, and a depth of 95 cm-1 at the RCCSD(T) level. A CASPT2 scan along the linear geometry show that this vdW basin exists on both the doublet and quartet excited surfaces. These results infer the existence of a collision complex between NO A2Σ+ and O2 X3Σg-, as predicted by earlier experiments.

10.
Phys Chem Chem Phys ; 24(48): 29423-29436, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453640

RESUMO

Time-resolved photoelectron imaging and supporting ab initio quantum chemistry calculations were used to investigate non-adiabatic excess energy redistribution dynamics operating in the saturated thioethers diethylsulfide, tetrahydrothiophene and thietane. In all cases, 200 nm excitation leads to molecular fragmentation on an ultrafast (<100 fs) timescale, driven by the evolution of Rydberg-to-valence orbital character along the S-C stretching coordinate. The C-S-C bending angle was also found to be a key coordinate driving initial internal conversion through the excited state Rydberg manifold, although only small angular displacements away from the ground state equilibrium geometry are required. Conformational constraints imposed by the cyclic ring structures of tetrahydrothiophene and thietane do not therefore influence dynamical timescales to any significant extent. Through use of a high-intensity 267 nm probe, we were also able to detect the presence of some transient (bi)radical species. These are extremely short lived, but they appear to confirm the presence of two competing excited state fragmentation channels - one proceeding directly from the initially prepared 4p manifold, and one involving non-adiabatic population of the 4s state. This is in addition to a decay pathway leading back to the S0 electronic ground state, which shows an enhanced propensity in the 5-membered ring system tetrahydrothiophene over the other two species investigated.

11.
Phys Chem Chem Phys ; 24(39): 24542-24552, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193799

RESUMO

X-ray scattering cross sections are calculated using a range of increasingly correlated methods: Hartree-Fock (HF), complete active space self-consistent field (CASSCF), Monte Carlo configuration interaction (MCCI), and full configuration interaction (FCI). Even for the seemingly straightforward case of ground state Ne, the accuracy of the total scattering is significantly better with a more correlated wavefunction. Scanning the bond distance in ground state CO shows that the total scattering signal tracks the multireference character. We examine the convergence of the elastic, inelastic, and total scattering of O3. Overall, the inelastic and total components are found to be the most sensitive to the strength of correlation. Our results suggest that highly accurate measurement of X-ray scattering could provide a sensitive probe of pair-wise correlation between electrons.

12.
J Chem Phys ; 157(16): 164304, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319438

RESUMO

The quenching of NO A 2Σ+ with O2 as a collisional partner is important for combustion and atmospheric processes. There is still a lack of theoretical understanding of this event, especially concerning the nature of the different quenching pathways. In this work, we provide potential energy surfaces (PESs) of 20 electronic states of this system. We computed the spin-doublet and spin-quartet PESs using SA-CASSCF and XMS-CASPT2. We find two potential quenching pathways. The first one (Q1) is a two-step orientation-specific process. The system first undergoes an electron transfer (NO+ X 1Σ+ + O2 -X 2Πg) at short distances, before crossing to lower neutral states, such as NO X 2Π + O2a 1Δg, O2b 1Σg +, O2X 3Σg -, or even 2 O(3P). The second quenching pathway (Q2) is less orientation-dependent and should be sudden without requiring the proximity conditioning Q1. The Q2 cross section will be enhanced with increasing initial vibrational level in both O2 and NO. It is responsible for the production of NO X 2Π with higher O2 excited states, such as O2c 1Σu -, A'3Δu, or A 3Σu +. Overall, this work provides a first detailed theoretical investigation of the quenching of NO A 2Σ+ by O2X 3Σg - as well as introduces a weighting scheme generally applicable to multireference, open-shell bimolecular systems. The effect of spin-multiplicity on the different quenching pathways is also discussed.

13.
Chemistry ; 27(41): 10711-10716, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34046954

RESUMO

Photoactivatable agents offer the prospect of highly selective cancer therapy with low side effects and novel mechanisms of action that can combat current drug resistance. 1,8-Naphthalimides with their extended π system can behave as light-harvesting groups, fluorescent probes and DNA intercalators. We conjugated N-(carboxymethyl)-1,8-naphthalimide (gly-R-Nap) with an R substituent on the naphthyl group to photoactive diazido PtIV complexes to form t,t,t-[Pt(py)2 (N3 )2 (OH)(gly-R-Nap)], R=H (1), 3-NO2 (2) or 4-NMe2 (3). They show enhanced photo-oxidation, cellular accumulation and promising photo-cytotoxicity in human A2780 ovarian, A549 lung and PC3 prostate cancer cells with visible light activation, and low dark cytotoxicity. Complexes 1 and 2 exhibit pre-intercalation into DNA, resulting in enhanced photo-induced DNA crosslinking. Complex 3 has a red-shifted absorption band at 450 nm, allowing photoactivation and photo-cytotoxicity with green light.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , DNA , Feminino , Humanos , Luz , Compostos Organoplatínicos , Platina
14.
Chemphyschem ; 22(19): 1989-1995, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34269504

RESUMO

The association between molecular chirality and helical characteristics known as the chirality-helicity equivalence is determined for the first time by quantifying a chirality-helicity measure consistent with photoexcitation circular dichroism experiments. This is demonstrated using a formally achiral SN 2 reaction and a chiral SN 2 reaction. Both the achiral and chiral SN 2 reactions possess significant values of the chirality-helicity measure and display a Walden inversion, i. e. an inversion of the chirality between the reactant and product. We also track the chirality-helicity measure along the reaction path and discover the presence of chirality at the transition state and two intermediate structures for both reactions. We demonstrate the need for the chirality-helicity measure to differentiate between steric effects due to eclipsed conformations and chiral behaviors in formally achiral species. We explain the significance of this work for asymmetric synthetic reactions including the intermediate structures where the Cahn-Ingold-Prelog (CIP) rules cannot be used.

15.
Inorg Chem ; 60(23): 17450-17461, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503331

RESUMO

Half-sandwich Os-arene complexes exhibit promising anticancer activity, but their photochemistry has hardly been explored. To exploit the photocytotoxicity and photochemistry of Os-arenes, O,O-chelated complexes [Os(η6-p-cymene)(Curc)Cl] (OsCUR-1, Curc = curcumin) and [Os(η6-biphenyl)(Curc)Cl] (OsCUR-2), and N,N-chelated complexes [Os(η6-biphenyl)(dpq)I]PF6 (OsDPQ-2, dpq = pyrazino[2,3-f][1,10]phenanthroline) and [Os(η6-biphenyl)(bpy)I]PF6 (OsBPY-2, bpy = 2,2'-bipyridine), have been investigated. The Os-arene curcumin complexes showed remarkable photocytotoxicity toward a range of cancer cell lines (blue light IC50: 2.6-5.8 µM, photocytotoxicity index PI = 23-34), especially toward cisplatin-resistant cancer cells, but were nontoxic to normal cells. They localized mainly in mitochondria in the dark but translocated to the nucleus upon photoirradiation, generating DNA and mitochondrial damage, which might contribute toward overcoming cisplatin resistance. Mitochondrial damage, apoptosis, ROS generation, DNA damage, angiogenesis inhibition, and colony formation were observed when A549 lung cancer cells were treated with OsCUR-2. The photochemistry of these Os-arene complexes was investigated by a combination of NMR, HPLC-MS, high energy resolution fluorescence detected (HERFD), X-ray adsorption near edge structure (XANES) spectroscopy, total fluorescence yield (TFY) XANES spectra, and theoretical computation. Selective photodissociation of the arene ligand and oxidation of Os(II) to Os(III) occurred under blue light or UVA excitation. This new approach to the design of novel Os-arene complexes as phototherapeutic agents suggests that the novel curcumin complex OsCUR-2, in particular, is a potential candidate for further development as a photosensitizer for anticancer photoactivated chemotherapy (PACT).


Assuntos
Antineoplásicos/farmacologia , Calixarenos/farmacologia , Complexos de Coordenação/farmacologia , Osmio/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Calixarenos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Osmio/química , Processos Fotoquímicos
16.
J Phys Chem A ; 125(33): 7174-7184, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34379417

RESUMO

Time-resolved photoelectron imaging was used to investigate nonadiabatic processes operating in the excited electronic states of nitrobenzene and three methyl-substituted derivatives: 3,5-, 2,6-, and 2,4-dimethylnitrobenzene. The primary goal was evaluating the dynamical impact of the torsional angle between the NO2 group and the benzene ring plane-something previously implicated in mediating the propensity for branching into different photodissociation pathways (NO vs NO2 elimination). Targeted, photoinitiated release of NO radicals is of interest for clinical medicine applications, and there is a need to establish basic structure-dynamics-function principles in systematically varied model systems following photoexcitation. Within our 200 ps experimental detection window, we observed no significant differences in the excited-state lifetimes exhibited by all species under study using a 267 nm pump and ionization with an intense 400 nm probe. In agreement with previous theoretical predictions, this suggests that the initial energy redistribution dynamics within the singlet and triplet manifolds are driven by motions localized predominantly on the NO2 group. Our findings also imply that both NO and NO2 elimination occur from a vibrationally hot ground state on extended (nanosecond) timescales, and any variations in NO vs NO2 branching upon site-selective methylation are due to steric effects influencing isomerization prior to dissociation.

17.
Chemistry ; 26(43): 9486-9494, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32428304

RESUMO

A series of novel bimetallic TiIV amine bis(phenolate) complexes was synthesised and fully characterised. X-ray crystallography studies revealed distorted octahedral geometries around the Ti centres with single or double oxo-bridges connecting the two metals. These robust, air- and moisture-stable complexes were employed as photosensitisers generating singlet oxygen following irradiation with visible light (420 nm) LED module in a commercial flow reactor. All five complexes showed high activity in the photo-oxygenation of α-terpinene and achieved complete conversion to ascaridole in four hours at ambient temperature. The excellent selectivity of these photosensitisers towards ascaridole (vs. transformation to p-cymene) was demonstrated with control experiments using a traditional TiO2 catalyst. Further comparative studies employing the free pro-ligands as well as a monometallic analogue highlighted the importance of the 'TiO2 -like' moiety in the polymetallic catalysts. Computational studies were used to determine the nature of the ligand to metal charge transfer (LMCT) states and singlet-triplet gaps for each complex, the calculated trends in the UV-vis absorption spectra across the series agreed well with the experimental results.

18.
Photochem Photobiol Sci ; 19(11): 1538-1547, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33029609

RESUMO

Given the prevalence of fluorescence spectroscopy in biological systems, and the prevalence of pterin derivatives throughout biological systems, presented here is an assessment of the two-photon absorption spectroscopy as it applies to a range of the most commonly studied pterin derivatives. QR-CAMB3LYP//ccpVTZ calculations suggest that the use of two-photon spectroscopic methods would enable a more capable differentiation between closely related derivatives in comparison to the one-photon spectra, which show minimal qualitative deviation. Study of short tail derivatives shows that, in most cases, two-photon accessible states solely involve the π* LUMO as the particle orbital, with biopterin, neopterin, and 6-(hydroxymethyl)pterin presenting exceptional potential for targetting. Investigation of derivatives in which the tail contains an aromatic ring resulted in the observation of a series of two-photon accessible states involving charge transfer from the tail to the pterin moiety, the cross sections of which are highly dependent on the adoption of a planar geometry. The observation of these states presents a novel method for tracking the substitution of biologically important molecules such as folic acid and 5-methenyltetrahydrofolylpolyglutamate.


Assuntos
Teoria da Densidade Funcional , Fótons , Pterinas/metabolismo , Humanos , Estrutura Molecular , Pterinas/química , Espectrometria de Fluorescência
19.
J Phys Chem A ; 124(51): 10667-10677, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320005

RESUMO

We provide a set of molecular dynamics simulations employing a force field specifically parameterized for organic π-conjugated materials. The resulting conformation ensemble was coupled to quantum chemistry calculations, and quantities of interest for optoelectronic applications, namely, ground- and excited-state energies, oscillator strengths, and dipole moments were extracted. This combined approach allowed not only exploration of the configurational landscape but also of the resulting electronic properties of each frame within the simulation and thus probe the link between conformation and property. A study was made of the sampling and convergence requirements to yield reliable averages over the ensemble. Typically between 800 and 1000 conformations were sufficient to ensure convergence of properties. However, for some oligomers, more configurations were required to achieve convergence of the oscillator strength and magnitude of the dipole moment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA