Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1968): 20212093, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135344

RESUMO

Once considered 'weird wonders' of the Cambrian, the emblematic Burgess Shale animals Anomalocaris and Opabinia are now recognized as lower stem-group euarthropods and have provided crucial data for constraining the polarity of key morphological characters in the group. Anomalocaris and its relatives (radiodonts) had worldwide distribution and survived until at least the Devonian. However, despite intense study, Opabinia remains the only formally described opabiniid to date. Here we reinterpret a fossil from the Wheeler Formation of Utah as a new opabiniid, Utaurora comosa nov. gen. et sp. By visualizing the sample of phylogenetic topologies in treespace, our results fortify support for the position of U. comosa beyond the nodal support traditionally applied. Our phylogenetic evidence expands opabiniids to multiple Cambrian stages. Our results underscore the power of treespace visualization for resolving imperfectly preserved fossils and expanding the known diversity and spatio-temporal ranges within the euarthropod lower stem group.


Assuntos
Artrópodes , Animais , Artrópodes/anatomia & histologia , Evolução Biológica , Fósseis , Filogenia
2.
Proc Biol Sci ; 288(1953): 20210464, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34157876

RESUMO

The biological pump is crucial for transporting nutrients fixed by surface-dwelling primary producers to demersal animal communities. Indeed, the establishment of an efficient biological pump was likely a key factor enabling the diversification of animals over 500 Myr ago during the Cambrian explosion. The modern biological pump operates through two main vectors: the passive sinking of aggregates of organic matter, and the active vertical migration of animals. The coevolution of eukaryotes and sinking aggregates is well understood for the Proterozoic and Cambrian; however, little attention has been paid to the establishment of the vertical migration of animals. Here we investigate the morphological variation and hydrodynamic performance of the Cambrian euarthropod Isoxys. We combine elliptical Fourier analysis of carapace shape with computational fluid dynamics simulations to demonstrate that Isoxys species likely occupied a variety of niches in Cambrian oceans, including vertical migrants, providing the first quantitative evidence that some Cambrian animals were adapted for vertical movement in the water column. Vertical migration was one of several early Cambrian metazoan innovations that led to the biological pump taking on a modern-style architecture over 500 Myr ago.


Assuntos
Evolução Biológica , Fósseis , Animais , Proteínas de Membrana Transportadoras , Oceanos e Mares
3.
Proc Natl Acad Sci U S A ; 115(21): 5323-5331, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29784780

RESUMO

Euarthropoda is one of the best-preserved fossil animal groups and has been the most diverse animal phylum for over 500 million years. Fossil Konservat-Lagerstätten, such as Burgess Shale-type deposits (BSTs), show the evolution of the euarthropod stem lineage during the Cambrian from 518 million years ago (Ma). The stem lineage includes nonbiomineralized groups, such as Radiodonta (e.g., Anomalocaris) that provide insight into the step-by-step construction of euarthropod morphology, including the exoskeleton, biramous limbs, segmentation, and cephalic structures. Trilobites are crown group euarthropods that appear in the fossil record at 521 Ma, before the stem lineage fossils, implying a ghost lineage that needs to be constrained. These constraints come from the trace fossil record, which show the first evidence for total group Euarthropoda (e.g., Cruziana, Rusophycus) at around 537 Ma. A deep Precambrian root to the euarthropod evolutionary lineage is disproven by a comparison of Ediacaran and Cambrian lagerstätten. BSTs from the latest Ediacaran Period (e.g., Miaohe biota, 550 Ma) are abundantly fossiliferous with algae but completely lack animals, which are also missing from other Ediacaran windows, such as phosphate deposits (e.g., Doushantuo, 560 Ma). This constrains the appearance of the euarthropod stem lineage to no older than 550 Ma. While each of the major types of fossil evidence (BSTs, trace fossils, and biomineralized preservation) have their limitations and are incomplete in different ways, when taken together they allow a coherent picture to emerge of the origin and subsequent radiation of total group Euarthropoda during the Cambrian.


Assuntos
Artrópodes/classificação , Evolução Biológica , Fósseis , Animais , Artrópodes/anatomia & histologia , Biota , Filogenia
4.
Proc Biol Sci ; 286(1917): 20192370, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31822253

RESUMO

Recent investigations on neurological tissues preserved in Cambrian fossils have clarified the phylogenetic affinities and head segmentation in pivotal members of stem-group Euarthropoda. However, palaeoneuroanatomical features are often incomplete or described from single exceptional specimens, raising concerns about the morphological interpretation of fossilized neurological structures and their significance for early euarthropod evolution. Here, we describe the central nervous system (CNS) of the short great-appendage euarthropod Alalcomenaeus based on material from two Cambrian Burgess Shale-type deposits of the American Great Basin, the Pioche Formation (Stage 4) and the Marjum Formation (Drumian). The specimens reveal complementary ventral and lateral views of the CNS, preserved as a dark carbonaceous compression throughout the body. The head features a dorsal brain connected to four stalked ventral eyes, and four pairs of segmental nerves. The first to seventh trunk tergites overlie a ventral nerve cord with seven ganglia, each associated with paired sets of segmental nerve bundles. Posteriorly, the nerve cord features elongate thread-like connectives. The Great Basin fossils strengthen the original description-and broader evolutionary implications-of the CNS in Alalcomenaeus from the early Cambrian (Stage 3) Chengjiang deposit of South China. The spatio-temporal recurrence of fossilized neural tissues in Cambrian Konservat-Lagerstätten across North America (Pioche, Burgess Shale, Marjum) and South China (Chengjiang, Xiaoshiba) indicates that their preservation is consistent with the mechanism of Burgess Shale-type fossilization, without the need to invoke alternative taphonomic pathways or the presence of microbial biofilms.


Assuntos
Artrópodes , Evolução Biológica , Sistema Nervoso Central , Animais , Fósseis , Filogenia
5.
PLoS One ; 19(5): e0304559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820465

RESUMO

The diversification of macroscopic pelagic arthropods such as caryocaridid archaeostracans was a crucial aspect of the Great Ordovician Biodiversification Event, and the plankton revolution. A pelagic mode of life has been inferred for caryocaridids from their common presence in black graptolitic shales alongside carapace morphologies that appear streamlined. However, the hydrodynamic performance within the group and comparisons with other archaeostracans were lacking. Here we use a computational fluid dynamics approach to quantify the hydrodynamic performance of caryocaridids, and other early Palaeozoic archaeostracans including Arenosicaris inflata and Ordovician ceratiocaridids. We show that streamlining of the carapace was an important factor facilitating a pelagic mode of life in caryocaridids, in reducing the drag coefficient and facilitating a broader range of lift coefficients at different angles of attack. However, comparable hydrodynamic performance is also recovered for some ceratiocaridids. This suggests that alongside carapace streamlining, adaptations to appendages and thinning of the carapace were also important for a pelagic mode of life in Ordovician caryocaridids.


Assuntos
Hidrodinâmica , Animais , Artrópodes/anatomia & histologia , Artrópodes/fisiologia , Fósseis , Exoesqueleto/anatomia & histologia
6.
Natl Sci Rev ; 11(3): nwad284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312385

RESUMO

Despite the importance of ontogenetic data on early diverging euarthropods to our understanding of the ecology and evolution of past life, the data are distinctly lacking, as reconstructing life histories of fossil animals is often challenging. Here we report the growth trajectory of frontal appendages of the apex predator Amplectobelua symbrachiata, one of the most common radiodont arthropods from the early Cambrian Chengjiang biota (c. 520 Ma) of China. Analysis of 432 specimens (9.1-137.1 mm length; 1.3-25.6 mm height) reveals that appendages grew isometrically, with an estimated maximum size of the whole animal of c. 90 cm. Individuals grew rapidly compared to extant arthropods, as assessed using the electronic length-frequency analysis (ELEFAN) approach. Therefore, we show that the Cambrian apex predator A. symbrachiata was an extremely fast-growing arthropod, with an unusual life history strategy that formed as part of the escalatory 'arms race' that shaped the Cambrian explosion over 500 Ma.

7.
R Soc Open Sci ; 10(10): 230935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37885986

RESUMO

Deposits preserving non-biomineralized tissues and animals provide an unrivalled opportunity to study the evolution and radiation of early animal life. Numerous sites of Cambrian age are known from North America (Laurentia) and South China (East Gondwana), which provide a high resolution picture of the fauna at low latitudes. By contrast, our knowledge of Cambrian animals from higher latitudes is relatively poor. This patchiness in our knowledge of animal life during the radiation of animals in the Cambrian period limits our ability to understand and detect palaeogeographic trends and does not provide a full appreciation of animal diversity at this time. Here we report a new middle Cambrian (Drumian) site preserving lightly sclerotized euarthropod carapaces, sponges and palaeoscolecids near the village of Mesones de Isuela in the Iberian Chains (Spain). We describe three bivalved euarthropod carapace morphs, two comparable to those described from the only other high latitude Drumian deposit, the Jince Formation (Czechia), and one distinct from previous discoveries. These new findings highlight the importance of high latitude Gondwana Konservat Lagerstatten for understanding the palaeogeographical aspect of the radiation of early animals and suggest that bivalved euarthropods at high latitudes were larger than those at lower latitudes during the Cambrian.

8.
Nat Ecol Evol ; 7(5): 666-674, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37127766

RESUMO

Burgess Shale-type faunas are critical to our understanding of animal evolution during the Cambrian, giving an unrivalled view of the morphology of ancient organisms and the ecology of the earliest animal-dominated communities. Rare examples in Lower Ordovician strata such as the Fezouata Biota illustrate the subsequent evolution of ecosystems but only from before the main phase of the Great Ordovician Biodiversification Event. Later Ordovician Konservat-Lagerstätten are not directly comparable with the Burgess Shale-type faunas as they do not represent diverse, open-shelf communities, limiting our ability to track ecological development through the critical Ordovician biodiversification interval. Here we present the Castle Bank fauna: a highly diverse Middle Ordovician Burgess Shale-type fauna from Wales (UK) that is directly comparable with the Burgess Shale and Chengjiang biotas in palaeoenvironment and preservational style. The deposit includes animals with morphologies similar to the iconic Cambrian taxa Opabinia, Yohoia and Wiwaxia, combined with early examples of more derived groups such as barnacles. Many taxa such as kinorhynchs show the small sizes typical of modern faunas, illustrating post-Cambrian miniaturization. Castle Bank provides a new perspective on early animal evolution, revealing the next chapter in ecosystem development following the Chengjiang, Burgess Shale and Fezouata biotas.


Assuntos
Ecossistema , Fósseis , Animais , País de Gales , Biota
9.
Nat Commun ; 13(1): 6969, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379946

RESUMO

A crucial step in the evolution of Euarthropoda (chelicerates, myriapods, pancrustaceans) was the transition between fossil groups that possessed frontal appendages innervated by the first segment of the brain (protocerebrum), and living groups with a protocerebral labrum and paired appendages innervated by the second brain segment (deutocerebrum). Appendage homologies between the groups are controversial. Here we describe two specimens of opabiniid-like euarthropods, each bearing an anterior proboscis (a fused protocerebral appendage), from the Middle Ordovician Castle Bank Biota, Wales, UK. Phylogenetic analyses support a paraphyletic grade of stem-group euarthropods with fused protocerebral appendages and a posterior-facing mouth, as in the iconic Cambrian panarthropod Opabinia. These results suggest that the labrum may have reduced from an already-fused proboscis, rather than a pair of arthropodized appendages. If some shared features between the Castle Bank specimens and radiodonts are considered convergent rather than homologous, phylogenetic analyses retrieve them as opabiniids, substantially extending the geographic and temporal range of Opabiniidae.


Assuntos
Artrópodes , Evolução Biológica , Animais , Filogenia , Fósseis , Artrópodes/genética , Cabeça , Boca/anatomia & histologia
10.
PeerJ ; 9: e10509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552709

RESUMO

Radiodonts have long been known from Cambrian deposits preserving non-biomineralizing organisms. In Utah, the presence of these panarthropods in the Spence and Wheeler (House Range and Drum Mountains) biotas is now well-documented. Conversely, radiodont occurrences in the Marjum Formation have remained scarce. Despite the large amount of work undertaken on its diverse fauna, only one radiodont (Peytoia) has been reported from the Marjum Biota. In this contribution we quadruple the known radiodont diversity of the Marjum fauna, with the description of the youngest members of two genera, Caryosyntrips and Pahvantia, and that of a new taxon Buccaspinea cooperi gen. et sp. nov. This new taxon can be identified from its large oral cone bearing robust hooked teeth with one, two, or three cusps, and by the unique endite morphology and organisation of its frontal appendages. Appendages of at least 12 podomeres bear six recurved plate-like endites proximal to up to four spiniform distal endites. Pahvantia hastata specimens from the Marjum Formation are particularly large, but otherwise morphologically indistinguishable from the carapace elements of this species found in the Wheeler Formation. One of the two new Caryosyntrips specimens can be confidently assigned to C. camurus. The other bears the largest spines relative to appendage length recorded for this genus, and possesses endites of variable size and unequal spacing, making its taxonomic assignment uncertain. Caryosyntrips, Pahvantia, and Peytoia are all known from the underlying Wheeler Formation, whereas isolated appendages from the Spence Shale and the Wheeler Formation, previously assigned to Hurdia, are tentatively reidentified as Buccaspinea. Notably, none of these four genera occurs in the overlying Weeks Formation, providing supporting evidence of a faunal restructuring around the Drumian-Guzhangian boundary. The description of three additional nektonic taxa from the Marjum Formation further documents the higher relative proportion of free-swimming species in this biota compared to those of the Wheeler and Weeks Lagerstätten. This could be related to a moderate deepening of the basin and/or changing regional ocean circulation at this time.

11.
R Soc Open Sci ; 8(11): 211134, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804574

RESUMO

Stem-group euarthropods are important for understanding the early evolutionary and ecological history of the most species-rich animal phylum on Earth. Of particular interest are fossil taxa that occupy a phylogenetic position immediately crownwards of radiodonts, for this part of the euarthropod tree is associated with the appearance of several morphological features that characterize extant members of the group. Here, we report two new euarthropods from the Cambrian Stage 4 Guanshan Biota of South China. The fuxianhuiid Alacaris? sp. is represented by isolated appendages composed of a gnathobasic protopodite and an endite-bearing endopod of at least 20 podomeres. This material represents the youngest occurrence of the family Chengjiangocarididae, and its first record outside the Chengjiang and Xiaoshiba biotas. We also describe Lihuacaris ferox gen. et sp. nov. based on well-preserved and robust isolated appendages. Lihuacaris ferox exhibits an atypical combination of characters including an enlarged rectangular base, 11 endite-bearing podomeres and a hypertrophied distal element bearing 8-10 curved spines. Alacaris? sp. appendages display adaptations for macrophagy. Lihuacaris ferox appendages resemble the frontal appendages of radiodonts, as well as the post-oral endopods of chengjiangocaridid fuxianhuids and other deuteropods with well-documented raptorial/predatory habits. Lihuacaris ferox contributes towards the record of endemic biodiversity in the Guanshan Biota.

12.
PeerJ ; 8: e8453, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117612

RESUMO

Biomineralised trilobite exoskeletons provide a 250 million year record of abnormalities in one of the most diverse arthropod groups in history. One type of abnormality-repaired injuries-have allowed palaeobiologists to document records of Paleozoic predation, accidental damage, and complications in moulting experienced by the group. Although Cambrian trilobite injuries are fairly well documented, the illustration of new injured specimens will produce a more complete understanding of Cambrian prey items. To align with this perspective, nine new abnormal specimens displaying healed injuries from the Smithsonian National Museum of Natural History collection are documented. The injury pattern conforms to the suggestion of lateralised prey defence or predator preference, but it is highlighted that the root cause for such patterns is obscured by the lumping of data across different palaeoecological and environmental conditions. Further studies of Cambrian trilobites with injuries represent a key direction for uncovering evidence for the Cambrian escalation event.

13.
R Soc Open Sci ; 7(6): 200459, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32742697

RESUMO

Originally considered as large, solely Cambrian apex predators, Radiodonta-a clade of stem-group euarthropods including Anomalocaris-now comprises a diverse group of predators, sediment sifters and filter feeders. These animals are only known from deposits preserving non-biomineralized material, with radiodonts often the first and/or only taxa known from such deposits. Despite the widespread and diverse nature of the group, only a handful of radiodonts are known from post-Cambrian deposits, and all originate from deposits or localities rich in other total-group euarthropods. In this contribution, we describe the first radiodont from the UK, an isolated hurdiid frontal appendage from the Tremadocian (Lower Ordovician) Dol-cyn-Afon Formation, Wales, UK. This finding is unusual in two major aspects: firstly, the appendage (1.8 mm in size) is less than half the size of the next smallest radiodont frontal appendage known, and probably belonged to an animal between 6 and 15 mm in length; secondly, it was discovered in the sponge-dominated Afon Gam Biota, one of only a handful of non-biomineralized total-group euarthropods known from this deposit. This Welsh hurdiid breaks new ground for Radiodonta in terms of both its small size and sponge-dominated habitat. This occurrence demonstrates the adaptability of the group in response to the partitioning of ecosystems and environments in the late Cambrian and Early Ordovician world.

14.
Sci Rep ; 9(1): 17102, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745138

RESUMO

Horseshoe crabs are archetypal marine chelicerates with a fossil record extending from the Lower Ordovician to today. The major horseshoe crab groups are thought to have arisen in the middle to late Palaeozoic. Here we present the oldest known limuloid from the lower Carboniferous (Tournaisian stage, c. 350 million years ago) of Scotland: Albalimulus bottoni gen. et sp. nov. A comprehensive phylogenetic analysis supports the placement of A. bottoni as a representative of the extant family Limulidae and 100 million years older than any other limulid taxon. The use of geometric morphometric analyses corroborate the erection of the new taxon and illustrates the exploitation of morphospace by xiphosurids. This new taxon highlights the complex evolutionary history of xiphosurids and the importance of documenting these unique Palaeozoic individuals.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/fisiologia , Filogenia , Animais , Caranguejos Ferradura/classificação , Escócia
15.
Zoological Lett ; 5: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210962

RESUMO

BACKGROUND: Radiodonta, large Palaeozoic nektonic predators, occupy a pivotal evolutionary position as stem-euarthropods and filled important ecological niches in early animal ecosystems. Analyses of the anatomy and phylogenetic affinity of these large nektonic animals have revealed the origins of the euarthropod compound eye and biramous limb, and interpretations of their diverse feeding styles have placed various radiodont taxa as primary consumers and apex predators. Critical to our understanding of both radiodont evolution and ecology are the paired frontal appendages; however, the vast differences in frontal appendage morphology between and within different radiodont families have made it difficult to identify the relative timings of character acquisitions for this body part. RESULTS: Here we describe a new genus of hurdiid, Ursulinacaris, from the middle Cambrian (Miaolingian, Wuliuan) Mount Cap Formation (Northwest Territories, Canada) and Jangle Limestone (Nevada, USA). Ursulinacaris has the same organisation as other hurdiid frontal appendages, with elongate endites on the first five podomeres in the distal articulated region and auxiliary spines on the distal margin of endites only. Unlike all other hurdiid genera, which possess a single row of elongated and blade-like ventral endites, this taxon uniquely bears paired slender endites. CONCLUSION: The blade-like endite morphology is shown to be a hurdiid autapomorphy. Two other frontal appendage characters known only in hurdiids, namely auxiliary spines on the distal margin of endites only, and elongate endites on the first five podomeres in the distal articulated region only, predate this innovation.

16.
Nat Commun ; 9(1): 3774, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218075

RESUMO

The rapid diversification of metazoans and their organisation in modern-style marine ecosystems during the Cambrian profoundly transformed the biosphere. What initially sparked this Cambrian explosion remains passionately debated, but the establishment of a coupling between pelagic and benthic realms, a key characteristic of modern-day oceans, might represent a primary ecological cause. By allowing the transfer of biomass and energy from the euphotic zone-the locus of primary production-to the sea floor, this biological pump would have boosted diversification within the emerging metazoan-dominated benthic communities. However, little is known about Cambrian pelagic organisms and their trophic interactions. Here we describe a filter-feeding Cambrian radiodont exhibiting morphological characters that likely enabled the capture of microplankton-sized particles, including large phytoplankton. This description of a large free-swimming suspension-feeder potentially engaged in primary consumption suggests a more direct involvement of nekton in the establishment of an oceanic pelagic-benthic coupling in the Cambrian.


Assuntos
Artrópodes/fisiologia , Comportamento Alimentar , Fósseis , Fitoplâncton , Animais , Artrópodes/anatomia & histologia , Evolução Biológica , Biologia Marinha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA