Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 24(14): 3471-9, 2004 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15071094

RESUMO

The amygdala is involved in the associative processes for both appetitive and aversive emotions, and its function is modulated by stress hormones. The neuropeptide corticotrophin releasing factor (CRF) is released during stress and has been linked to many stress-related behavioral, autonomic, and endocrine responses. In the present study, nonanxiety-inducing doses of a potent CRF type 1 and 2 receptor agonist, urocortin (Ucn), was infused locally into the basolateral amygdala (BLA) of rats. After 5 daily injections of Ucn, the animals developed anxiety-like responses in behavioral tests. Intravenous administration of the anxiogenic agent sodium lactate elicited robust increases in blood pressure, respiratory rate, and heart rate. Furthermore, in the absence of any additional Ucn treatment, these behavioral and autonomic responses persisted for >30 d. Whole-cell patch-clamp recordings from BLA neurons of these hyper-reactive animals revealed a pronounced reduction in both spontaneous and stimulation-evoked IPSPs, leading to a hyperexcitability of the BLA network. This Ucn-induced plasticity appears to be dependent on NMDA receptor and subsequent calcium-calmodulin-dependent protein kinase II (CaMKII) activation, because it is blocked by pretreatment with NMDA receptor antagonists and by coadministration of CaMKII inhibitors. Our results show for the first time a stress peptide-induced behavioral syndrome that can be correlated with cellular mechanisms of neural plasticity, a novel mechanism that may explain the etiological role of stress in several chronic psychiatric and medical disorders.


Assuntos
Sintomas Afetivos/fisiopatologia , Tonsila do Cerebelo/efeitos dos fármacos , Hormônio Liberador da Corticotropina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Estresse Fisiológico/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/efeitos dos fármacos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Vias de Administração de Medicamentos , Esquema de Medicação , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/agonistas , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Lactato de Sódio/farmacologia , Transmissão Sináptica/fisiologia , Urocortinas
2.
Neurobiol Learn Mem ; 80(3): 302-14, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14521872

RESUMO

Computational modeling assists in analyzing the specific functional role of the cellular effects of acetylcholine within cortical structures. In particular, acetylcholine may regulate the dynamics of encoding and retrieval of information by regulating the magnitude of synaptic transmission at excitatory recurrent connections. Many abstract models of associative memory function ignore the influence of changes in synaptic strength during the storage process and apply the effect of these changes only during a so-called recall-phase. Efforts to ensure stable activity with more realistic, continuous updating of the synaptic strength during the storage process have shown that the memory capacity of a realistic cortical network can be greatly enhanced if cholinergic modulation blocks transmission at synaptic connections of the association fibers during the learning process. We here present experimental data from an olfactory cortex brain slice preparation showing that previously potentiated fibers show significantly greater suppression (presynaptic inhibition) by the cholinergic agonist carbachol than unpotentiated fibers. We conclude that low suppression of non-potentiated fibers during the learning process ensures the formation of self-organized representations in the neural network while the higher suppression of previously potentiated fibers minimizes interference between overlapping patterns. We show in a computational model of olfactory cortex, that, together, these two phenomena reduce the overlap between patterns that are stored within the same neural network structure. These results further demonstrate the contribution of acetylcholine to mechanisms of cortical plasticity. The results are consistent with the extensive evidence supporting a role for acetylcholine in encoding of new memories and enhancement of response to salient sensory stimuli.


Assuntos
Redes Neurais de Computação , Condutos Olfatórios/metabolismo , Receptores Colinérgicos/metabolismo , Sinapses/metabolismo , Carbacol/administração & dosagem , Carbacol/farmacologia , Agonistas Colinérgicos/administração & dosagem , Agonistas Colinérgicos/farmacologia , Humanos , Condutos Olfatórios/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores Colinérgicos/efeitos dos fármacos , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA