Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Bioallied Sci ; 16(Suppl 3): S1971-S1973, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39346343

RESUMO

Access cavity preparation, chemo-mechanical preparation, and obturation make up the majority of the endodontic triad. Every action should be carefully observed by the clinician. In the last two decades, endodontics has seen advancements in both technology and materials. Given the technical advancements in applied sciences, magnification, and imaging techniques, minimally invasive therapies are currently used in the medical and dentistry industries. This review article will describe minimally invasive Access cavity designs and their advantages and disadvantages in Endodontic treatment.

2.
In Silico Pharmacol ; 12(1): 9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327875

RESUMO

Bidens pilosa L. has been traditionally used as an anti-diabetic herbal medicine; however, its mechanism of action remains elusive. In this study, the potential role of B. pilosa compounds on alpha-amylase inhibition and regulation of multiple pathways was investigated via computational and experimental studies. The phytocompounds were retrieved from plant databases and published literature. The druggability profile of these compounds was predicted using MolSoft. The probable targets of these phytocompounds were predicted using BindingDB (similarity index ≥ 0.7). Further, compound-gene set-pathway and functional enrichment analysis were performed using STRING and KEGG pathway databases. The network between compound-protein-pathway was constructed using Cytoscape. Molecular docking was performed using AutoDock Vina, executed through the POAP pipeline. The stability of the best docked complex was subjected to all-atom molecular dynamics (MD) simulation for 100 ns to investigate their structural stabilities and intermolecular interactions using GROMACS software. Finally, B. pilosa hydroalcoholic extract was subjected to LC-MS and tested for dose- and time-dependent alpha-amylase inhibitory activity. Out of 31 bioactive compounds, 13 were predicted to modulate the human pancreatic alpha-amylase (AMY2A) and 12 pathways associated with diabetes mellitus. PI3K-Akt signaling pathway (hsa04151) scored the lowest false discovery rate by triggering 15 genes. Further intermolecular interaction analysis of the docked complex revealed that Brassidin had the highest active site interaction and lowest binding energy compared to standard acarbose, and MD reveals the formation of a stable complex throughout 100 ns production run. LC-MS analysis revealed the presence of 13 compounds (targeting AMY2A) in B. pilosa hydroalcoholic extract, which showed potent AMY2A inhibition by in vitro studies that corroborate in silico findings for its anti-diabetic activity. Based on these findings, enriched fractions/pure compounds inhibitory activity that can be performed in future for drug discovery. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00187-9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA