Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Small ; 19(8): e2205881, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504329

RESUMO

Two-dimensional layered transition metal dichalcogenides have emerged as promising materials for supercapacitors and hydrogen evolution reaction (HER) applications. Herein, the molybdenum sulfide (MoS2 )@vanadium sulfide (VS2 ) and tungsten sulfide (WS2 )@VS2  hybrid nano-architectures prepared via a facile one-step hydrothermal approach is reported. Hierarchical hybrids lead to rich exposed active edge sites, tuned porous nanopetals-decorated morphologies, and high intrinsic activity owing to the strong interfacial interaction between the two materials. Fabricated supercapacitors using MoS2 @VS2  and WS2 @VS2  electrodes exhibit high specific capacitances of 513 and 615 F g- 1 , respectively, at an applied current of 2.5 A g- 1  by the three-electrode configuration. The asymmetric device fabricated using WS2 @VS2  electrode exhibits a high specific capacitance of 222 F g- 1  at an applied current of 2.5 A g- 1  with the specific energy of 52 Wh kg- 1  at a specific power of 1 kW kg- 1 . For HER, the WS2 @VS2  catalyst shows noble characteristics with an overpotential of 56 mV to yield 10 mA cm- 2 , a Tafel slope of 39 mV dec-1 , and an exchange current density of 1.73 mA cm- 2 . In addition, density functional theory calculations are used to evaluate the durable heterostructure formation and adsorption of hydrogen atom on the various accessible sites of MoS2 @VS2  and WS2 @VS2  heterostructures.

2.
Mol Biol Evol ; 38(5): 2014-2029, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33570580

RESUMO

Mimivirus is one of the most complex and largest viruses known. The origin and evolution of Mimivirus and other giant viruses have been a subject of intense study in the last two decades. The two prevailing hypotheses on the origin of Mimivirus and other viruses are the reduction hypothesis, which posits that viruses emerged from modern unicellular organisms; whereas the virus-first hypothesis proposes viruses as relics of precellular forms of life. In this study, to gain insights into the origin of Mimivirus, we have carried out extensive phylogenetic, correlation, and multidimensional scaling analyses of the putative proteins involved in the replication of its 1.2-Mb large genome. Correlation analysis and multidimensional scaling methods were validated using bacteriophage, bacteria, archaea, and eukaryotic replication proteins before applying to Mimivirus. We show that a large fraction of mimiviral replication proteins, including polymerase B, clamp, and clamp loaders are of eukaryotic origin and are coevolving. Although phylogenetic analysis places some components along the lineages of phage and bacteria, we show that all the replication-related genes have been homogenized and are under purifying selection. Collectively our analysis supports the idea that Mimivirus originated from a complex cellular ancestor. We hypothesize that Mimivirus has largely retained complex replication machinery reminiscent of its progenitor while losing most of the other genes related to processes such as metabolism and translation.


Assuntos
Coevolução Biológica , Mimiviridae/genética , Seleção Genética , Proteínas Virais/genética , Replicação Viral/genética , Transferência Genética Horizontal , Análise de Escalonamento Multidimensional , Filogenia
3.
J Mol Evol ; 85(5-6): 188-204, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29143083

RESUMO

We studied the evolutionary relationships of different primase-helicase bifunctional proteins, found mostly in viruses, virophages, plasmids, and organellar genomes, by phylogeny and correlation analysis. Our study suggests independent origins of primase-helicase bifunctional proteins resulting from multiple fusion events between genes encoding primase and helicase domains of different families. The correlation analysis further indicated strong functional dependencies of domains in the bifunctional proteins that are part of smaller genomes and plasmids. Bifunctional proteins found in some bacterial genomes exhibited weak coevolution probably suggesting that these are the non-functional remnants of the proteins acquired via horizontal transfer. We have put forward possible scenarios for the origin of primase-helicase bifunctional proteins in large eukaryotic DNA viruses and virophages.


Assuntos
DNA Helicases/metabolismo , DNA Primase/metabolismo , DNA Helicases/genética , DNA Primase/genética , Replicação do DNA/fisiologia , Vírus de DNA/genética , Bases de Dados de Proteínas , Eucariotos/genética , Evolução Molecular , Genoma , Modelos Moleculares , Filogenia , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Proteínas Virais/genética
4.
J Fluoresc ; 26(6): 2187-2197, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27592352

RESUMO

An efficient protocol for the synthesis of new rhodol derivatives has been developed. The synthesis involves condensation of 2-hydroxy benzophenone derivatives with 1, 3-dihydroxy benzene derivatives in solvents such as ionic liquid (N-methyl-2-pyrrolidonium hydrogen sulfate) and methane sulphonic acid. Both ionic liquid and methane sulphonic acid were found to be promising self-catalyzed solvents to bring out the conversion to form desired rhodols in excellent yields. In N-methyl-2-pyrrolidonium hydrogen sulfate reaction proceeds faster compared to methane sulphonic acid. The new fluorophores are investigated for their photophysical properties in various microenvironments and systematically characterized by means of density functional theory and time dependent density functional theory. Photophysical properties of the new rhodafluors found sensitive towards change in the pH of media and thus can be used as efficient pH sensors.

5.
Cells Tissues Organs ; 199(2-3): 81-102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401759

RESUMO

Mesenchymal stem cells (MSCs) have important roles in the area of regenerative medicine and clinical applications due to their pluripotent nature. Osteogenic differentiation of MSCs has been studied extensively using various stimulants to develop models of bone repair. There are several factors that enhance the differentiation of MSCs into bone tissues. This review focuses on the effects of various inducers on the osteoblast differentiation of MSCs at different stages of cellular development. We discuss the various growth factors, hormones, vitamins, cytokines, chemical stimulants, and mechanical forces applied in bioreactors that play an essential role in the proliferation, differentiation, and matrix mineralization of stem cells during osteogenesis. Various nanoparticles have also been used recently for the same purpose and the results are promising. Moreover, we review the role of various stresses, including thermal stress, and the subsequent involvement of heat shock proteins as inducers of the proliferation and differentiation of osteoblasts. We also report how various proteasome inhibitors have been shown to induce proliferation and osteogenic differentiation of MSCs in a number of cases. In this communication, the role of peptide-based scaffolds in osteoblast proliferation and differentiation is also reviewed. Based on the reviewed information, this article proposes novel possibilities for the enhancement of proliferation, differentiation, and migration of osteoblasts from MSCs. © 2014 S. Karger AG, Basel.


Assuntos
Proteínas de Choque Térmico/química , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Animais , Proliferação de Células/efeitos dos fármacos , Proteínas de Choque Térmico/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
6.
J Mater Sci Mater Med ; 25(5): 1267-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24515862

RESUMO

Silica/silver core-shell nanoparticles (NPs) were synthesized by coating silver NPs on silica core particles (size ~300 ± 10 nm) via electro less reduction method. The core-shell NPs were characterized for their structural, morphological, compositional and optical behavior using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and UV-Visible spectroscopy, respectively. The size (16-35 nm) and loaded amount of silver NPs on the silica core were found to be dependent upon reaction time and activation method of silica. The bactericidal activity of the NPs was tested by broth micro dilution method against both Bacillus subtilis (gram positive) and Escherichia coli ATCC25922 (gram negative) bacterium. The bactericidal activity of silica/silver core-shell NPS is more against E. coli ATCC25922, when compared to B. subtilis. The minimal inhibitory concentration of the core-shell NPs ranged from 7.8 to 250 µg/mL and is found to be dependent upon the amount of silver on silica, the core. These results suggest that silica/silver core-shell NPs can be utilized as a strong substitutional candidate to control pathogenic bacterium, which are otherwise resistant to antibiotics, making them applicable in diverse medical devices.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Dióxido de Silício/química , Prata/administração & dosagem , Prata/química , Absorção Fisico-Química , Antibacterianos/administração & dosagem , Antibacterianos/química , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Difusão , Teste de Materiais , Nanocápsulas/ultraestrutura
7.
J Conserv Dent ; 26(1): 104-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908724

RESUMO

Context: Mandibular impacted third molars are the most frequently impacted teeth in humans and can predispose the adjacent second molar to an array of detrimental effects such as caries, periodontitis, and cervical resorption thus the aim of this study was to determine the same. Subjects and Methods: A retrospective observational cross-sectional study involving patients with orthopantomography presenting with impacted lower third molar. The type, depth, and level of impaction, the extent of caries, periodontal changes, and the presence of cervical resorption were assessed. Statistical Analysis Used: Data were analyzed using SPSS version 21.0. with Chi-square. Results: Mesioangular impaction was most commonly noted. The pattern of impaction had a direct influence in the formation of carious lesions, cervical resorption, and periodontal ligament (PDL) changes. Conclusions: Noting the pattern of third molar impaction helps the clinician to forecast problems that may occur on adjacent teeth and initiate necessary prophylactic treatment.

8.
Dalton Trans ; 52(39): 13852-13857, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772345

RESUMO

The doping of metal-organic frameworks (MOFs) with metal-ions has emerged as a powerful strategy for enhancing their catalytic performance. Doping allows for the tailoring of the electronic structure and local coordination environment of MOFs, thus imparting on them unique properties and enhanced functionalities. This frontier article discusses the impact of metal-ion doping on the electronic structure and local coordination of MOFs, highlighting the effects on their electrocatalytic properties in relation to the oxygen evolution reaction (OER). The fundamental mechanisms underlying these modifications are explored, while recent advances, challenges, and prospects in the field are discussed. In addition, experimental techniques that can be applied to tackle the realization of effective metal-ion doping of MOFs are also noted briefly.

9.
Dalton Trans ; 52(31): 10933-10941, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490008

RESUMO

This work reports a promising and sustainable method for valorization of abundantly available biomass feedstocks to overcome the thermodynamic high energy barrier of the OER via glucose electrolysis as a proxy anodic reaction, thereby driving the energy-efficient water splitting for green hydrogen generation. For this, a robust and efficient MIL-88B(Fe) based electrocatalyst is engineered via Cu doping. The ultrasonically prepared Cu-doped@ MIL-88B ink when drop-cast on nickel foam (NF) produces thin nano-porous 2D-sheet like films having a thickness of ca. 300 nm and demonstrates an excellent glucose oxidation reaction (GOR) with a lower potential of 1.35 V versus RHE at 10 mA cm-2. In addition, this electrode shows outstanding long-term electrochemical durability for 50 h and exhibits the maximum GOR current load of 350 mA cm-2 at 1.48 V vs. RHE, while the pristine MIL-88B based electrode exhibits a current load of only 180 mA cm-2 at the same potential bias. The remarkably higher current density after doping indicates an accelerated GOR, which is ascribed to the electronic structure modulation of the Fe nodes by Cu, thereby enhancing the active sites and charge transport characteristics of the frameworks. Most importantly, the MOF-based electrodes demonstrate the occurrence of the GOR prior to the OER at a large potential difference, hence assisting the energy-efficient water splitting for green hydrogen production.

10.
J Conserv Dent Endod ; 26(5): 525-529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292373

RESUMO

Aim: To determine the effect of three different dentin hypersensitivity treatment procedures on the microtensile bond strength of etch and rinse and self-etch adhesive system. Materials and Methods: Eighty extracted intact human permanent lower premolars were decoronated, and dentin was exposed on the buccal surface. The teeth were randomly assigned to two experimental groups of 40 teeth each: etch and rinse system or self-etch system. The 40 samples assigned were further randomly assigned to four desensitizing treatment subgroups: Control, Gluma, NovaMin, and GC tooth Mousse with 10 samples per subgroup. Desensitizing treatment was performed two times each day for 2 weeks respectively. The exposed dentin was subjected to etch and rinse or self-etch adhesive system bonding agent as per the group and restored using composite to 4-mm thickness. Samples were then subjected to universal testing machine for microtensile bond strength. Results: The bond strength to the dentin obtained with etch and rinse adhesive system group where significantly higher (P < 0.05) when compared to self-etch adhesive system. However, there was no significant effect of the desensitizing agent on the microtensile bond strength in its own. Scanning electron microscope imaging reviled tubular occlusion in all specimens treated with desensitizer. Conclusion: The bond strength was majorly impacted by the type of adhesive system used. While the desensitizing agents used in the study had little or no adverse effect on the bond strength of composites to dentin surface.

11.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242026

RESUMO

Utilizing zeolitic imidazolate frameworks (ZIFs) poses a significant challenge that demands a facile synthesis method to produce uniform and nanometer-scale materials with high surface areas while achieving high yields. Herein, we demonstrate a facile and cost-effective strategy to systematically produce ZIF8 nanocrystals. Typically, ZIF8 nanocrystal synthesis involves a wet chemical route. As the reaction time decreased (150, 120, and 90 min), the size of the ZIF8 crystals decreased with uniform morphology, and productivity reached as high as 89%. The composition of the product was confirmed through XRD, FE-SEM, TEM, EDS, and Raman spectroscopy. The ZIF8 synthesized with different reaction time was finally employed for catalyzing the electrochemical hydrogen evaluation reaction (HER). The optimized ZIF8-3 obtained at 90 min of reaction time exhibited a superior catalytic action on the HER in alkaline medium, along with a remarkably long-term stability for 24 h compared with the other ZIF8 nanocrystals obtained at different reaction times. Specifically, the optimized ZIF8-3 sample revealed an HER overpotential of 172 mV and a Tafel slope of 104.15 mV·dec-1. This finding, thus, demonstrates ZIF8 as a promising electrocatalyst for the production of high-value-added green and sustainable hydrogen energy.

12.
Front Microbiol ; 14: 1086962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876058

RESUMO

Microbial fuel cells (CS-UFC) utilize waste resources containing biodegradable materials that play an essential role in green energy. MFC technology generates "carbon-neutral" bioelectricity and involves a multidisciplinary approach to microbiology. MFCs will play an important role in the harvesting of "green electricity." In this study, a single-chamber urea fuel cell is fabricated that uses these different wastewaters as fuel to generate power. Soil has been used to generate electrical power in microbial fuel cells and exhibited several potential applications to optimize the device; the urea fuel concentration is varied from 0.1 to 0.5 g/mL in a single-chamber compost soil urea fuel cell (CS-UFC). The proposed CS-UFC has a high power density and is suitable for cleaning chemical waste, such as urea, as it generates power by consuming urea-rich waste as fuel. The CS-UFC generates 12 times higher power than conventional fuel cells and exhibits size-dependent behavior. The power generation increases with a shift from the coin cell toward the bulk size. The power density of the CS-UFC is 55.26 mW/m2. This result confirmed that urea fuel significantly affects the power generation of single-chamber CS-UFC. This study aimed to reveal the effect of soil properties on the generated electric power from soil processes using waste, such as urea, urine, and industrial-rich wastewater as fuel. The proposed system is suitable for cleaning chemical waste; moreover, the proposed CS-UFC is a novel, sustainable, cheap, and eco-friendly design system for soil-based bulk-type design for large-scale urea fuel cell applications.

13.
ACS Appl Mater Interfaces ; 15(10): 13238-13248, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867070

RESUMO

With the current evolution in the artificial intelligence technology, more biomimetic functions are essential to execute increasingly complicated tasks and respond to challenging work environments. Therefore, an artificial nociceptor plays a significant role in the advancement of humanoid robots. Organic-inorganic halide perovskites (OHPs) have the potential to mimic the biological neurons due to their inherent ion migration. Herein, a versatile and reliable diffusive memristor built on an OHP is reported as an artificial nociceptor. This OHP diffusive memristor showed threshold switching properties with excellent uniformity, forming-free behavior, a high ION/IOFF ratio (104), and bending endurance over >102 cycles. To emulate the biological nociceptor functionalities, four significant characteristics of the artificial nociceptor, such as threshold, no adaptation, relaxation, and sensitization, are demonstrated. Further, the feasibility of OHP nociceptors in artificial intelligence is being investigated by fabricating a thermoreceptor system. These findings suggest a prospective application of an OHP-based diffusive memristor in the future neuromorphic intelligence platform.

14.
Nanomaterials (Basel) ; 13(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37242007

RESUMO

A metal-organic framework (MOF) is a highly porous material with abundant redox capacitive sites for intercalation/de-intercalation of charges and, hence, is considered promising for electrode materials in supercapacitors. In addition, dopants can introduce defects and alter the electronic structure of the MOF, which can affect its surface reactivity and electrochemical properties. Herein, we report a copper-doped iron-based MOF (Cu@Fe-MOF/NF) thin film obtained via a simple drop-cast route on a 3D-nickel foam (NF) substrate for the supercapacitor application. The as-deposited Cu@Fe-MOF/NF electrodes exhibit a unique micro-sized bipyramidal structure composited with nanoparticles, revealing a high specific capacitance of 420.54 F g-1 at 3 A g-1 which is twice compared to the nano-cuboidal Fe-MOF/NF (210 F g-1). Furthermore, the asymmetric solid-state (ASSSC) supercapacitor device, derived from the assembly of Cu@Fe-MOF/NFǁrGO/NF electrodes, demonstrates superior performance in terms of energy density (44.20 Wh.kg-1) and electrochemical charge-discharge cycling durability with 88% capacitance retention after 5000 cycles. This work, thus, demonstrates a high potentiality of the Cu@Fe-MOF/NF film electrodes in electrochemical energy-storing devices.

15.
Nanomaterials (Basel) ; 13(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37513150

RESUMO

Developing highly efficient and durable hydrogen evolution reaction (HER) electrocatalysts is crucial for addressing the energy and environmental challenges. Among the 2D-layered chalcogenides, MoSe2 possesses superior features for HER catalysis. The van der Waals attractions and high surface energy, however, stack the MoSe2 layers, resulting in a loss of edge active catalytic sites. In addition, MoSe2 suffers from low intrinsic conductivity and weak electrical contact with active sites. To overcome the issues, this work presents a novel approach, wherein the in situ incorporated diethylene glycol solvent into the interlayers of MoSe2 during synthesis when treated thermally in an inert atmosphere at 600 °C transformed into graphene (Gr). This widened the interlayer spacing of MoSe2, thereby exposing more HER active edge sites with high conductivity offered by the incorporated Gr. The resulting MoSe2-Gr composite exhibited a significantly enhanced HER catalytic activity compared to the pristine MoSe2 in an acidic medium and demonstrated a superior HER catalytic activity compared to the state-of-the-art Pt/C catalyst, particularly at a high current density beyond ca. 55 mA cm-2. Additionally, the MoSe2-Gr catalyst demonstrated long-term electrochemical stability during HER. This work, thus, presents a facile and novel approach for obtaining an efficient MoSe2 electrocatalyst applicable in green hydrogen production.

16.
Dalton Trans ; 52(35): 12185-12193, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37594409

RESUMO

Developing effective electrocatalysts for the oxygen evolution reaction (OER) that are highly efficient, abundantly available, inexpensive, and environmentally friendly is critical to improving the overall efficiency of water splitting and the large-scale development of water splitting technologies. We, herein, introduce a facile synthetic strategy for depositing the self-supported arrays of 1D-porous nanoneedles of a manganese cobalt oxide (Mn0.21Co2.79O4: MCO) thin film demonstrating an enhanced electrocatalytic activity for OER in an alkaline electrolyte. For this, an MCO film was synthesized via thermal treatment of a hydroxycarbonate film obtained from a hydrothermal route. The deposited films were characterized through scanning electron microscopy (SEM), X-ray diffractometry (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In contrast to a similar 1D-array of a pristine Co3O4 (CO) nanoneedle film, the MCO film exhibits a remarkably enhanced electrocatalytic performance in the OER with an 85 mV lower overpotential for the benchmark current density of 10 mA cm-2. In addition, the MCO film also demonstrates long-term electrochemical stability for the OER in 1.0 M KOH aqueous electrolyte.

17.
J Assoc Physicians India ; 60: 72-4, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23029752

RESUMO

Peripartum cardiomyopathy as a diagnosis needs to be considered in antenatal and immediate postpartum women with clinical features of cardiac failure. As more and more women at increasing age go for assisted reproduction, screening for risk factors needs to be done. Treatment involves coordination between cardiologist and obstetrician as both the patient's cardiac status and well being of the baby needs to be considered. In this case report we present an elderly Primigravida, conceived with in-vitro fertilization (donor oocytes) who developed unexplained cardiac failure post LSCS.


Assuntos
Cardiomiopatias/fisiopatologia , Complicações Cardiovasculares na Gravidez/fisiopatologia , Transtornos Puerperais/fisiopatologia , Adulto , Cardiomiopatias/tratamento farmacológico , Cesárea , Feminino , Fertilização in vitro , Humanos , Gravidez , Complicações Cardiovasculares na Gravidez/tratamento farmacológico , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/fisiopatologia
18.
Dalton Trans ; 51(37): 14190-14200, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36056677

RESUMO

Manganese dioxide (MnO2) is considered a promising aspirant for energy storage materials on account of its higher theoretical capacitance along with low capital cost. However, its performance is generally limited by its poor lifespan and intrinsic conductivity. In this study, MnO2-incorporated iron oxide (Fe3O4) nanoflowers were synthesized through a facile hydrothermal route and their electrochemical performance was probed. The surface composition and morphology of the as-synthesized samples were confirmed using X-ray diffraction, X-ray photoemission spectroscopy, and field emission scanning microscopy. The nanoflower-like structure and synergistic effect between the two oxides of the as-prepared MnO2@Fe3O4 nanocomposite electrode result in desirable surface area and intrinsic conductivity. Owing to its higher surface area and electrical conductivity, the MnO2@Fe3O4 nanoflower-like nanocomposite exhibits an enhanced specific capacitance (Cs) of 1651 F g-1 (1 A g-1) in a three-electrode test cell, which is two-fold higher than those of pristine Fe3O4 and MnO2. In addition, an asymmetric supercapacitor (ASC) was readily constructed by sandwiching a cellulose membrane (separator) between MnO2@Fe3O4 (cathode) and activated carbon (anode). Significantly, the ASC displayed a high Cs of 131 F g-1 (1 A g-1) along with a pretty high cycling stability of 96% over 5000 cycles at 15 A g-1 and a high energy density of 46.6 Wh kg-1 at 0.8 kW kg-1. These results demonstrate the significant potential of the MnO2@Fe3O4 nanoflower ASC device for state-of-the-art futuristic advanced energy storage applications.

19.
Dalton Trans ; 51(38): 14775, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36131626

RESUMO

Correction for 'Fabrication of Fe3O4-incorporated MnO2 nanoflowers as electrodes for enhanced asymmetric supercapacitor performance' by Iqra Rabani et al., Dalton Trans., 2022, https://doi.org/10.1039/D2DT01942F.

20.
Dalton Trans ; 51(3): 797-816, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34874382

RESUMO

With perovskite materials, rapid progress in power conversion efficiency (PCE) to reach 25% has gained a significant amount of attention from the solar cell industry. Since the development of solid-state perovskite solar cells, rapid research development and investigation on structure design, device fabrication and fundamental studies have contributed to solid-state perovskite solar cells to be a strong candidate for next-generation solar energy. The promising efficiency with low-cost materials is the key point over the other material-based solar cells. The power conversion efficiency (PCE) of two-dimensional (2D) perovskite materials is yet to be enhanced in order to contest with the 3D perovskite-based solar cells. Their enormous variety compromises better prospects and possibilities for research. Two-dimensional (2D) perovskites play a multi-functional role within a solar cell, such as a capping layer, passivating layer, prime cell absorber, and in a hybrid 3D/2D perovskite-based solar cell absorber. This review summarizes the evolution of solar cells that are based on 2D perovskites and their prominent character in solar cells, along with the significant trends. The fundamental configuration and the optoelectronic characteristics, including the band orientation and the transportation of the charges, are discussed in detail. The 2D perovskites are analyzed to study the confined charges within the inorganic structure due to the dielectric and quantum confinement influence. Furthermore, the importance of cesium cation (Cs+) doped with 2D substance (BA)2(MA3) PbI3 approach has been discussed to attain high power conversion efficiency (PCE). These attributes offer an efficient step towards air-stable and small-sized perovskites as a new group of renewable energy sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA