Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Protoc ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671208

RESUMO

In temperate and subtropical regions, ancient proteins are reported to survive up to about 2 million years, far beyond the known limits of ancient DNA preservation in the same areas. Accordingly, their amino acid sequences currently represent the only source of genetic information available to pursue phylogenetic inference involving species that went extinct too long ago to be amenable for ancient DNA analysis. Here we present a complete workflow, including sample preparation, mass spectrometric data acquisition and computational analysis, to recover and interpret million-year-old dental enamel protein sequences. During sample preparation, the proteolytic digestion step, usually an integral part of conventional bottom-up proteomics, is omitted to increase the recovery of the randomly degraded peptides spontaneously generated by extensive diagenetic hydrolysis of ancient proteins over geological time. Similarly, we describe other solutions we have adopted to (1) authenticate the endogenous origin of the protein traces we identify, (2) detect and validate amino acid variation in the ancient protein sequences and (3) attempt phylogenetic inference. Sample preparation and data acquisition can be completed in 3-4 working days, while subsequent data analysis usually takes 2-5 days. The workflow described requires basic expertise in ancient biomolecules analysis, mass spectrometry-based proteomics and molecular phylogeny. Finally, we describe the limits of this approach and its potential for the reconstruction of evolutionary relationships in paleontology and paleoanthropology.

2.
PLoS One ; 18(12): e0291308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100471

RESUMO

Pleistocene Pongo teeth show substantial variation in size and morphology, fueling taxonomic debates about the paleodiversity of the genus. We investigated prominent features of the enamel-dentine-junction junction (EDJ)-phylogenetically informative internal structures-of 71 fossil Pongo lower molars from various sites by applying geometric morphometrics and conducted paleoproteomic analyses from enamel proteins to attempt to identify extinct orangutan species. Forty-three orangutan lower molars representing Pongo pygmaeus and Pongo abelii were included for comparison. The shape of the EDJ was analyzed by placing five landmarks on the tip of the main dentine horns, and 142 semilandmarks along the marginal ridges connecting the dentine horns. Paleoproteomic analyses were conducted on 15 teeth of Late Pleistocene Pongo using high-resolution tandem mass spectrometry. The geometric morphometric results show variations in EDJ shape regarding aspects of the height and position of the dentine horns and connecting ridges. Despite the issue of molar position and sample size, modern molars are distinguished from fossil counterparts by their elongated tooth outline and narrowly positioned dentine horns. Proteomic results show that neither a distinction of P. pygmaeus and P. abelii, nor a consistent allocation of fossil specimens to extant species is feasible. Based on the EDJ shape, the (late) Middle to Late Pleistocene Pongo samples from Vietnam share the same morphospace, supporting the previous allocation to P. devosi, although substantial overlap with Chinese fossils could also indicate close affinities with P. weidenreichi. The hypothesis that both species represent one chronospecies cannot be ruled out. Two fossil specimens, one from Tam Hay Marklot (Laos, Late Pleistocene), and another from Sangiran (Java, Early to Middle Pleistocene), along with some specimens within the Punung sample (Java), exhibit affinities with Pongo abelii. The Punung fossils might represent a mix of early Late Pleistocene and later specimens (terminal Pleistocene to Holocene) related to modern Pongo. The taxonomy and phylogeny of the complete Punung sample needs to be further investigated.


Assuntos
Hominidae , Pongo abelii , Dente , Animais , Pongo/anatomia & histologia , Hominidae/anatomia & histologia , Proteômica , Dente Molar/anatomia & histologia , Pongo pygmaeus , Fósseis
3.
Genetics ; 215(2): 497-509, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234956

RESUMO

The time, extent, and genomic effect of the introgressions from archaic humans into ancestors of extant human populations remain some of the most exciting venues of population genetics research in the past decade. Several studies have shown population-specific signatures of introgression events from Neanderthals, Denisovans, and potentially other unknown hominin populations in different human groups. Moreover, it was shown that these introgression events may have contributed to phenotypic variation in extant humans, with biomedical and evolutionary consequences. In this study, we present a comprehensive analysis of the unusually divergent haplotypes in the Eurasian genomes and show that they can be traced back to multiple introgression events. In parallel, we document hundreds of deletion polymorphisms shared with Neanderthals. A locus-specific analysis of one such shared deletion suggests the existence of a direct introgression event from the Altai Neanderthal lineage into the ancestors of extant East Asian populations. Overall, our study is in agreement with the emergent notion that various Neanderthal populations contributed to extant human genetic variation in a population-specific manner.


Assuntos
Genética Populacional , Haplótipos , Homem de Neandertal/genética , Fenótipo , Polimorfismo Genético , Seleção Genética , Animais , Genoma Humano , Hominidae , Humanos , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA