RESUMO
Bats play an essential role in maintaining ecosystems. Their unique characteristics increase the likelihood of interactions with various species, making them a potential source for the emergence and spread of infectious diseases. Hantaviruses are continuously expanding their range of hosts. This study presents the identification of a partial genome associated with Hantavirus in samples collected from neotropical bats. We conducted a metagenomic study using samples from Carollia perspicillata in Maranhão, Brazil. Tissue fragments were used for RNA extraction and subsequent sequencing. The resulting data was subjected to bioinformatic analysis. A sequence showing an identity of 72.86% with the L gene in the reference genome was obtained. The phylogenetic analysis revealed the study sequence, denoted as Buritiense, clustering within the Mobatvirus clade. The intragroup analysis showed a broader dispersion and were markedly asymmetric. This observation suggests the possibility that Buritiense could potentially represent a new species within the bat-borne hantaviruses, but further analyses are needed to provide additional insights if bats plays a role as reservoirs and the potential for transmission to human populations.
Assuntos
Quirópteros , Orthohantavírus , Vírus de RNA , Animais , Brasil , Ecossistema , Orthohantavírus/genética , FilogeniaRESUMO
Using Illumina NextSeq sequencing and bioinformatics, we identified and characterized thirty-three viral sequences of unsegmented and multipartite viral families in Aedes spp., Culex sp. and Anopheles darlingi female mosquito pools from Porto São Luiz and Pirizal, Alto Pantanal. Seventeen sequences belong to unsegmented viral families, twelve represent putative novel insect-specific viruses (ISVs) within families Chuviridae (3/33; partial genomes) and coding-complete sequences of Xinmoviridae (1/33), Rhabdoviridae (2/33) and Metaviridae (6/33); and five coding-complete sequences of already-known ISVs. Notably, two putative novel rhabdoviruses, Corixo rhabdovirus 1 and 2, were phylogenetically related to Coxipo dielmovirus, but separated from other Alpharhabdovirinae genera, sharing Anopheles spp. as host. Regarding multipartite families, sixteen segments of different putative novel viruses were identified (13 coding-complete segments) within Durnavirales (4/33), Elliovirales (1/33), Hareavirales (3/33) and Reovirales (8/33) orders. Overall, this study describes twenty-eight (28/33) putative novel ISVs and five (5/33) already described viruses using metagenomics approach.
Assuntos
Aedes , Anopheles , Culex , Genoma Viral , Filogenia , Viroma , Animais , Brasil , Feminino , Anopheles/virologia , Viroma/genética , Aedes/virologia , Culex/virologia , Mosquitos Vetores/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Vírus de Insetos/genética , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificaçãoRESUMO
The soils of the Amazon are complex environments with different organisms cohabiting in continuous adaptation processes; this changes significantly when these environments are modified for the development of agricultural activities that alter the chemical, macro, and microbiological compositions. The metagenomic variations and the levels of the environmental impact of four different soil samples from the Amazon region were evaluated, emphasizing the resistome. Soil samples from the organic phase from the different forest, pasture, and transgenic soybean monocultures of 2-14 years old were collected in triplicate at each site. The samples were divided into two groups, and one group was pre-treated to obtain genetic material to perform sequencing for metagenomic analysis; another group carried out the chemical characterization of the soil, determining the pH, the content of cations, and heavy metals; these were carried out in addition to identifying with different databases the components of the microbiological communities, functional genes, antibiotic and biocide resistance genes. A greater diversity of antibiotic resistance genes was observed in the forest soil. In contrast, in monoculture soils, a large number of biocide resistance genes were evidenced, highlighting the diversity and abundance of crop soils, which showed better resistance to heavy metals than other compounds, with a possible dominance of resistance to iron due to the presence of the acn gene. For up to 600 different genes for resistance to antibiotics and 256 genes for biocides were identified, most of which were for heavy metals. The most prevalent was resistance to tetracycline, cephalosporin, penam, fluoroquinolone, chloramphenicol, carbapenem, macrolide, and aminoglycoside, providing evidence for the co-selection of these resistance genes in different soils. Furthermore, the influence of vegetation cover on the forest floor was notable as a protective factor against the impact of human contamination. Regarding chemical characterization, the presence of heavy metals, different stress response mechanisms in monoculture soils, and the abundance of mobile genetic elements in crop and pasture soils stand out. The elimination of the forest increases the diversity of genes for resistance to biocides, favoring the selection of genes for resistance to antibiotics in soils.
RESUMO
In 2018, during the surveillance for West Nile virus (WNV) in horses with neurological clinical signs in the state of Espírito Santo (Brazil), 19 animals were investigated, and 52 biological samples were collected for WNV diagnostic. One brain sample was positive for WNV by RT-qPCR and the virus was isolated in C6/36 cell culture and sequenced. We obtained a nearly complete genome of WNV co-infected with Peruvian horse sickness virus (PHSV) in the cell culture. After confirmation of PHSV by next-generation sequencing, a new PHSV RT-qPCR protocol was developed, which was used to detect another horse positive only for PHSV. This assay provides a simple and direct method for easy identification of PHSV from biological samples from horses and may become a useful tool in the epidemiological surveillance of this virus. It is the first case of PHSV in Brazil, and only the third country overall to report, 23 years after the first confirmed notification in Peru. Moreover, it is the first reported co-infection of PHSV and WNV in a horse with neurological signs, confirmed by RT-qPCR.
RESUMO
Chikungunya virus (CHIKV) was first reported in Brazil in 2014 and, after it spread countrywide, an outbreak of febrile illness with reports of arthralgia happened in the municipality of Xinguara, Pará, Brazil in 2017, indicating the virus' circulation. Here, we aimed to investigate CHIKV in mosquito vectors collected during an active surveillance of virus isolation in cell culture by using molecular detection and viral genome sequencing. A total of 492 Aedes, Culex and Mansonia mosquitoes were collected and separated in 36 pools according to the species and sex, and 22.2% (8/36) were positive. CHIKV was indentified in pools of Ae. aegypti females (n = 5), an Ae. aegypti male (n = 1) and in Culex quinquefasciatus females (n = 2). However, as the mosquitoes' whole bodies were macerated and used for detection, one cannot suggest the role of the latter in the viral transmission. Despite this, vector competence studies must be carried out in the different species to investigate long-term adaptations. Viral genome sequencing has characterized the East-Central-South-African (ECSA) genotype in all positive pools analyzed, corroborating previous reports for the Amazon region.
Assuntos
Aedes/virologia , Febre de Chikungunya/epidemiologia , Vírus Chikungunya/isolamento & purificação , Culex/virologia , Mosquitos Vetores/virologia , Animais , Brasil/epidemiologia , Febre de Chikungunya/virologia , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Surtos de Doenças , Feminino , Genoma Viral , Humanos , Masculino , FilogeniaRESUMO
Comprehensive comparative phylogenetic analyses were performed on 17 Gamboa serogroup viruses (GAMSVs) from distinct geographic regions in the Americas and other representative members of the genus Orthobunyavirus (Peribunyaviridae), based on small (S), medium (M), and large (L) open reading frame full-length and partial sequences. Genome characterization showed that the GAMSVs divide into four clades or genotypes. The GAMSVs have a genetic organization similar to other orthobunyaviruses, except that they have a larger NSm protein than other orthobunyaviruses. A serosurvey for Gamboa virus antibodies was performed in plasma from birds, other wild animals, and humans living around the Tucuruí hydroelectric dam in Pará state, northern Brazil, a known focus of GAMSV activity. Newborn chicks (Gallus gallus domesticus) were experimentally infected with a GAMSV, and the pathogenesis is described. Histopathological changes were primarily in the lungs and liver. Also, a review of the ecology of the GAMSVs in the Americas is included. In sum, this study presents the genomic and evolutionary characterization of the Gamboa group and the potential model of pathogenesis, which would be helpful for diagnostic purposes, epidemiology, and immunopathogenesis studies.