Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Immunol ; 22(6): 795, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33903768

RESUMO

A Correction to this paper has been published: https://doi.org/10.1038/s41590-021-00932-2.

2.
3.
Nat Immunol ; 22(3): 266-268, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33574618
4.
J Immunol ; 212(4): 702-714, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169331

RESUMO

We have previously reported that the gut microbiota of healthy infants harbors allergy-protective bacteria taxa that are depleted in infants with cow's milk allergy (CMA). Few reports have investigated the role of the gut microbiota in promoting allergic responses. In this study we selected a CMA-associated microbiota with increased abundance of Gram-negative bacteria for analysis of its proinflammatory potential. LPS is the major component of the outer membrane of Gram-negative bacteria. Colonization of mice with a global or conditional mutation of the LPS receptor TLR4 with this CMA microbiota induced expression of serum amyloid A1 (Saa1) and other Th17-, B cell-, and Th2-associated genes in the ileal epithelium in a TLR4-dependent manner. In agreement with the gene expression data, mice colonized with the CMA microbiota have expanded populations of Th17 and regulatory T cells and elevated concentrations of fecal IgA. Importantly, we used both antibiotic-treated specific pathogen-free and germ-free rederived mice with a conditional mutation of TLR4 in the CD11c+ compartment to demonstrate that the induction of proinflammatory genes, fecal IgA, and Th17 cells is dependent on TLR4 signaling. Furthermore, metagenomic sequencing revealed that the CMA microbiota has an increased abundance of LPS biosynthesis genes. Taken together, our results show that a microbiota displaying a higher abundance of LPS genes is associated with TLR4-dependent proinflammatory gene expression and a mixed type 2/type 3 response in mice, which may be characteristic of a subset of infants with CMA.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade a Leite , Humanos , Lactente , Feminino , Bovinos , Animais , Camundongos , Hipersensibilidade a Leite/complicações , Lipopolissacarídeos , Receptor 4 Toll-Like/genética , Imunidade , Imunoglobulina A
5.
Cell Rep ; 42(10): 113153, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742185

RESUMO

The increasing prevalence of food allergies has been linked to reduced commensal microbial diversity. In this article, we describe two features of allergy-protective Clostridia that contribute to their beneficial effects. Some Clostridial taxa bear flagella (a ligand for TLR5) and produce indole (a ligand for the aryl hydrocarbon receptor [AhR]). Lysates and flagella from a Clostridia consortium induced interleukin-22 (IL-22) secretion from ileal explants. IL-22 production is abrogated in explants from mice in which TLR5 or MyD88 signaling is deficient either globally or conditionally in CD11c+ antigen-presenting cells. AhR signaling in RORγt+ cells is necessary for the induction of IL-22. Mice deficient in AhR in RORγt+ cells exhibit increased intestinal permeability and are more susceptible to an anaphylactic response to food. Our findings implicate TLR5 and AhR signaling in a molecular mechanism by which commensal Clostridia protect against allergic responses to food.


Assuntos
Hipersensibilidade , Receptor 5 Toll-Like , Animais , Camundongos , Alérgenos , Bactérias , Ligantes , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Receptores de Hidrocarboneto Arílico
6.
mBio ; 13(1): e0385221, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35100875

RESUMO

Early in life, commensal bacteria play a major role in immune development, helping to guide the host response toward harmful stimuli while tolerating harmless antigens to prevent autoimmunity. Guillain-Barré syndrome (GBS) is an autoimmune disease caused by errant immune attack of antibody-bound ganglioside receptors on host nerve cells, resulting in paralysis. Lipooligosaccharides enveloping the prevalent enteric pathogen, Campylobacter jejuni, frequently mimic human gangliosides and can trigger GBS by stimulating the autoimmune response. In low- to middle-income countries, young children are consistently exposed to C. jejuni, and it is not known if this impacts GBS susceptibility later in life. Using a macrophage model, we examined the effect of training these cells with low doses of ganglioside-mimicking bacteria prior to challenge with GBS-associated antigens. This training caused decreased production of proinflammatory cytokines, suggesting tolerance induction. We then screened Campylobacter isolates from 154 infant fecal samples for GM1 ganglioside mimicry, finding that 23.4% of strains from both symptomatic and asymptomatic infants displayed GM1-like structures. Training macrophages with one of these asymptomatic carrier isolates also induced tolerance against GBS-associated antigens, supporting that children can be exposed to the tolerizing antigen early in life. RNA interference of Toll-like receptor 2 (TLR2) and TLR4 suggests that these receptors are not involved in tolerance associated with decreases in tumor necrosis factor (TNF), interleukin-6 (IL-6), or IL-1ß levels. The results of this study suggest that exposure to ganglioside-mimicking bacteria early in life occurs naturally and impacts host susceptibility to GBS development. IMPORTANCE In this study, we demonstrated that it is possible to tolerize immune cells to potentially dampen the autoreactive proinflammatory immune response against Guillain-Barré syndrome (GBS)-associated antigens. The innate immune response functions to arm the host against bacterial attack, but it can be tricked into recognizing the host's own cells when infectious bacteria display sugar structures that mimic human glycans. It is this errant response that leads to the autoimmunity and paralysis associated with GBS. By presenting immune cells with small amounts of the bacterial glycan mimic, we were able to suppress the proinflammatory immune response upon subsequent high exposure to glycan-mimicking bacteria. This suggests that individuals who have already been exposed to the glycan mimics in small amounts are less sensitive to autoimmune reactions against these glycans, and this could be a factor in determining susceptibility to GBS.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Síndrome de Guillain-Barré , Criança , Humanos , Pré-Escolar , Síndrome de Guillain-Barré/microbiologia , Gangliosídeos , Infecções por Campylobacter/microbiologia , Mimetismo Molecular , Gangliosídeo G(M1) , Lipopolissacarídeos , Macrófagos , Bactérias , Paralisia/complicações
7.
Viruses ; 13(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452516

RESUMO

Bacteriophages (phages) are predicted to be the most ubiquitous biological entity on earth, and yet, there are still vast knowledge gaps in our understanding of phage diversity and phage-host interactions. Approximately one hundred Acinetobacter-infecting DNA viruses have been identified, and in this report, we describe eight more. We isolated two typical dsDNA lytic podoviruses (CAP1-2), five unique dsRNA lytic cystoviruses (CAP3-7), and one dsDNA lysogenic siphovirus (SLAP1), all capable of infecting the multidrug resistant isolate Acinetobacter radioresistens LH6. Using transmission electron microscopy, bacterial mutagenesis, phage infectivity assays, carbohydrate staining, mass-spectrometry, genomic sequencing, and comparative studies, we further characterized these phages. Mutation of the LH6 initiating glycosyltransferase homolog, PglC, necessary for both O-linked glycoprotein and capsular polysaccharide (CPS) biosynthesis, prevented infection by the lytic podovirus CAP1, while mutation of the pilin protein, PilA, prevented infection by CAP3, representing the lytic cystoviruses. Genome sequencing of the three dsRNA segments of the isolated cystoviruses revealed low levels of homology, but conserved synteny with the only other reported cystoviruses that infect Pseudomonas species. In Pseudomonas, the cystoviruses are known to be enveloped phages surrounding their capsids with the inner membrane from the infected host. To characterize any membrane-associated glycoconjugates in the CAP3 cystovirus, carbohydrate staining was used to identify a low molecular weight lipid-linked glycoconjugate subsequently identified by mutagenesis and mass-spectrometry as bacterial lipooligosaccharide. Together, this study demonstrates the isolation of new Acinetobacter-infecting phages and the determination of their cell receptors. Further, we describe the genomes of a new genus of Cystoviruses and perform an initial characterization of membrane-associated glycoconjugates.


Assuntos
Acinetobacter/virologia , Bacteriófagos/química , Bacteriófagos/genética , Cystoviridae/química , Cystoviridae/genética , Podoviridae/química , Podoviridae/genética , RNA Viral/genética , Acinetobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Bacteriófagos/classificação , Bacteriófagos/metabolismo , Cystoviridae/classificação , Cystoviridae/metabolismo , Farmacorresistência Bacteriana Múltipla , Cromatografia Gasosa-Espectrometria de Massas , Genoma Viral , Filogenia , Podoviridae/classificação , Podoviridae/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , RNA Viral/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
8.
Front Microbiol ; 11: 397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265863

RESUMO

Many bacterial pathogens display glycosylated surface structures that contribute to virulence, and targeting these structures is a viable strategy for pathogen control. The foodborne pathogen Campylobacter jejuni expresses a vast diversity of flagellar glycans, and flagellar glycosylation is essential for its virulence. Little is known about why C. jejuni encodes such a diverse set of flagellar glycans, but it has been hypothesized that evolutionary pressure from bacteriophages (phages) may have contributed to this diversity. However, interactions between Campylobacter phages and host flagellar glycans have not been characterized in detail. Previously, we observed that Gp047 (now renamed FlaGrab), a conserved Campylobacter phage protein, binds to C. jejuni flagella displaying the nine-carbon monosaccharide 7-acetamidino-pseudaminic acid, and that this binding partially inhibits cell growth. However, the mechanism of this growth inhibition, as well as how C. jejuni might resist this activity, are not well-understood. Here we use RNA-Seq to show that FlaGrab exposure leads C. jejuni 11168 cells to downregulate expression of energy metabolism genes, and that FlaGrab-induced growth inhibition is dependent on motile flagella. Our results are consistent with a model whereby FlaGrab binding transmits a signal through flagella that leads to retarded cell growth. To evaluate mechanisms of FlaGrab resistance in C. jejuni, we characterized the flagellar glycans and flagellar glycosylation loci of two C. jejuni strains naturally resistant to FlaGrab binding. Our results point toward flagellar glycan diversity as the mechanism of resistance to FlaGrab. Overall, we have further characterized the interaction between this phage-encoded flagellar glycan-binding protein and C. jejuni, both in terms of mechanism of action and mechanism of resistance. Our results suggest that C. jejuni encodes as-yet unidentified mechanisms for generating flagellar glycan diversity, and point to phage proteins as exciting lenses through which to study bacterial surface glycans.

9.
Nat Commun ; 10(1): 1390, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918252

RESUMO

The AB5 toxins cholera toxin (CT) from Vibrio cholerae and heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli are notorious for their roles in diarrheal disease, but their effect on other intestinal bacteria remains unexplored. Another foodborne pathogen, Campylobacter jejuni, can mimic the GM1 ganglioside receptor of CT and LT. Here we demonstrate that the toxin B-subunits (CTB and LTB) inhibit C. jejuni growth by binding to GM1-mimicking lipooligosaccharides and increasing permeability of the cell membrane. Furthermore, incubation of CTB or LTB with a C. jejuni isolate capable of altering its lipooligosaccharide structure selects for variants lacking the GM1 mimic. Examining the chicken GI tract with immunofluorescence microscopy demonstrates that GM1 reactive structures are abundant on epithelial cells and commensal bacteria, further emphasizing the relevance of this mimicry. Exposure of chickens to CTB or LTB causes shifts in the gut microbial composition, providing evidence for new toxin functions in bacterial gut competition.


Assuntos
Toxinas Bacterianas/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Toxina da Cólera/farmacologia , Enterotoxinas/farmacologia , Proteínas de Escherichia coli/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/metabolismo , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Galinhas , Gangliosídeo G(M1)/metabolismo , Glicoconjugados/metabolismo , Mucosa Intestinal/patologia , Microscopia de Fluorescência , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo
10.
Viruses ; 7(12): 6661-74, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26694450

RESUMO

We previously characterized a carbohydrate binding protein, Gp047, derived from lytic Campylobacter phage NCTC 12673, as a promising diagnostic tool for the identification of Campylobacter jejuni and Campylobacter coli. We also demonstrated that this protein binds specifically to acetamidino-modified pseudaminic acid residues on host flagella, but the role of this protein in the phage lifecycle remains unknown. Here, we report that Gp047 is capable of inhibiting C. jejuni growth both on solid and liquid media, an activity, which we found to be bacteriostatic. The Gp047 domain responsible for bacterial growth inhibition is localized to the C-terminal quarter of the protein, and this activity is both contact- and dose-dependent. Gp047 gene homologues are present in all Campylobacter phages sequenced to date, and the resulting protein is not part of the phage particle. Therefore, these results suggest that either phages of this pathogen have evolved an effector protein capable of host-specific growth inhibition, or that Campylobacter cells have developed a mechanism of regulating their growth upon sensing an impending phage threat.


Assuntos
Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/crescimento & desenvolvimento , Flagelos/química , Inibidores do Crescimento/metabolismo , Lectinas/metabolismo , Polissacarídeos/metabolismo , Proteínas Virais/metabolismo , Antibacterianos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA