Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(6): 3419-3426, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734988

RESUMO

Pre-equilibrium reaction kinetics enable the overall rate of a catalytic reaction to be orders of magnitude faster than the rate-determining step. Herein, we demonstrate how pre-equilibrium kinetics can be applied to breaking the linear free-energy relationship (LFER) for electrocatalysis, leading to rate enhancement 5 orders of magnitude and lowering of overpotential to approximately thermoneutral. This approach is applied to pre-equilibrium formation of a metal-hydride intermediate to achieve fast formate formation rates from CO2 reduction without loss of selectivity (i.e., H2 evolution). Fast pre-equilibrium metal-hydride formation, at 108 M-1 s-1, boosts the CO2 electroreduction to formate rate up to 296 s-1. Compared with molecular catalysts that have similar overpotential, this rate is enhanced by 5 orders of magnitude. As an alternative comparison, overpotential is lowered by ∼50 mV compared to catalysts with a similar rate. The principles elucidated here to obtain pre-equilibrium reaction kinetics via catalyst design are general. Design and development that builds on these principles should be possible in both molecular homogeneous and heterogeneous electrocatalysis.

2.
Metab Eng ; 80: 142-150, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37739158

RESUMO

We have developed an electrical-biological hybrid system wherein an engineered microorganism consumes electrocatalytically produced formate from CO2 to supplement the bioproduction of isobutanol, a valuable fuel chemical. Biological CO2 sequestration is notoriously slow compared to electrochemical CO2 reduction, while electrochemical methods struggle to generate carbon-carbon bonds which readily form in biological systems. A hybrid system provides a promising method for combining the benefits of both biology and electrochemistry. Previously, Escherichia coli was engineered to assimilate formate and CO2 in central metabolism using the reductive glycine pathway. In this work, we have shown that chemical production in E. coli can benefit from single carbon substrates when equipped with the RGP. By installing the RGP and the isobutanol biosynthetic pathway into E. coli and by further genetic modifications, we have generated a strain of E. coli that can consume formate and produce isobutanol at a yield of >100% of theoretical maximum from glucose. Our results demonstrate that carbon produced from electrocatalytically reduced CO2 can bolster chemical production in E. coli. This study shows that E. coli can be engineered towards carbon efficient methods of chemical production.


Assuntos
Carbono , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Formiatos/metabolismo , Engenharia Metabólica/métodos
3.
Inorg Chem ; 62(5): 1919-1925, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36006454

RESUMO

The impact of cationic and Lewis acidic functional groups installed in the primary or secondary coordination sphere (PCS or SCS) of an (electro)catalyst is known to vary depending on the precise positioning of those groups. However, it is difficult to systematically probe the effect of that position. In this report, we probe the effect of the functional group position and identity on the observed reduction potentials (Ep,c) using substituted iron clusters, [Fe4N(CO)11R]n, where R = NO+, PPh2-CH2CH2-9BBN, (MePTA+)2, (MePTA+)4, and H+ and n = 0, -1, +1, or +3 (9-BBN is 9-borabicyclo(3.3.1)nonane; MePTA+ is 1-methyl-1-azonia-3,5-diaza-7-phosphaadamantane). The cationic NO+ and H+ ligands cause anodic shifts of 700 and 320 mV, respectively, in Ep,c relative to unsubstituted [Fe4N(CO)12]-. Infrared absorption band data, νCO, suggests that some of the 700 mV shift by NO+ results from electronic changes to the cluster core. This contrasts with the effects of cationic MePTA+ and H+ which cause primarily electrostatic effects on Ep,c. Lewis acidic 9-BBN in the SCS had almost no effect on Ep,c.

4.
Chemistry ; 25(34): 8092-8104, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-30912866

RESUMO

High-valent metal oxo oxidants are common catalytic-cycle intermediates in enzymes and known to be highly reactive. To understand which features of these oxidants affect their reactivity, a series of biomimetic iron(V) oxo oxidants with peripherally substituted biuret-modified tetraamido macrocyclic ligands were synthesized and characterized. Major shifts in the UV/Vis absorption as a result of replacing a group in the equatorial plane of the iron(V) oxo species were found. Further characterization by EPR spectroscopy, ESI-MS, and resonance Raman spectroscopy revealed differences in structure and the electronic configuration of these complexes. A systematic reactivity study with a range of substrates was performed and showed that the reactions are affected by electron-withdrawing substituents in the equatorial ligand, which enhance the reaction rate by almost 1016 orders of magnitude. Thus, the long-range electrostatic perturbations have a major influence on the rate constant. Finally, computational studies identified the various electronic contributions to the rate-determining reaction step and explained how the equatorial ligand periphery affects the properties of the oxidant.

5.
Phys Chem Chem Phys ; 20(20): 13845-13850, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29717729

RESUMO

Monomeric iron-oxo units have been confirmed as intermediates involved in the C-H bond activation in various metallo-enzymes. Biomimetic oxoiron complexes of the biuret modified tetra-amido macrocyclic ligand (bTAML) have been demonstrated to oxidize a wide variety of unactivated C-H bonds. In the current work, density functional theory (DFT) has been employed to investigate the hydrogen abstraction (HAT) reactivity differences across a series of bTAML complexes. The cause for the differences in the HAT energy barriers has been found to be the relative changes in the energy of the frontier molecular orbitals (FMOs) induced by electronic perturbation.

6.
Chemistry ; 23(14): 3414-3424, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28012231

RESUMO

A detailed electrochemical investigation of a series of iron complexes (biuret-modified tetraamido iron macrocycles FeIII -bTAML), including the first electrochemical generation of FeV (O), and demonstration of their efficacy as homogeneous catalysts for electrochemical water oxidation (WO) in aqueous medium are reported. Spectroelectrochemical and mass spectral studies indicated FeV (O) as the active oxidant, formed due to two redox transitions, which were assigned as FeIV (O)/FeIII (OH2 ) and FeV (O)/FeIV (O). The spectral properties of both of these high-valent iron oxo species perfectly match those of their chemically synthesised versions, which were thoroughly characterised by several spectroscopic techniques. The O-O bond-formation step occurs by nucleophilic attack of H2 O on FeV (O). A kinetic isotope effect of 3.2 indicates an atom-proton transfer (APT) mechanism. The reaction of chemically synthesised FeV (O) in CH3 CN and water was directly probed by electrochemistry and was found to be first-order in water. The pKa value of the buffer base plays a critical role in the rate-determining step by increasing the reaction rate several-fold. The electronic effect on redox potential, WO rates, and onset overpotential was studied by employing a series of iron complexes. The catalytic activity was enhanced by the presence of electron-withdrawing groups on the bTAML framework. Changing the substituents from OMe to NO2 resulted in an eightfold increase in reaction rate, while the overpotential increased threefold.

7.
Inorg Chem ; 56(18): 10852-10860, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28841016

RESUMO

Nonheme iron complexes bearing tetradentate N-atom-donor ligands with cis labile sites show great promise for chemoselective aliphatic C-H hydroxylation. However, several challenges still limit their widespread application. We report a mechanism-guided development of a peroxidase mimicking iron complex based on the bTAML macrocyclic ligand framework (Fe-bTAML: biuret-modified tetraamido macrocyclic ligand) as a catalyst to perform selective oxidation of unactivated 3° bonds with unprecedented regioselectivity (3°:2° of 110:1 for adamantane oxidation), high stereoretention (99%), and turnover numbers (TONs) up to 300 using mCPBA as the oxidant. Ligand decomposition pathways involving acid-induced demetalation were identified, and this led to the development of more robust and efficient Fe-bTAML complexes that catalyzed chemoselective C-H oxidation. Mechanistic studies, which include correlation of the product formed with the FeV(O) reactive intermediates generated during the reaction, indicate that the major pathway involves the cleavage of C-H bonds by FeV(O). When these oxidations were performed in the presence of air, the yield of the oxidized product doubled, but the stereoretention remained unchanged. On the basis of 18O labeling and other mechanistic studies, we propose a mechanism that involves the dual activation of mCPBA and O2 by Fe-bTAML, leading to formation of the FeV(O) intermediate. This high-valent iron oxo remains the active intermediate for most of the reaction, resulting in high regio- and stereoselectivity during product formation.

8.
Inorg Chem ; 56(11): 6352-6361, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28481521

RESUMO

In this report we compare the geometric and electronic structures and reactivities of [FeV(O)]- and [FeIV(O)]2- species supported by the same ancillary nonheme biuret tetraamido macrocyclic ligand (bTAML). Resonance Raman studies show that the Fe═O vibration of the [FeIV(O)]2- complex 2 is at 798 cm-1, compared to 862 cm-1 for the corresponding [FeV(O)]- species 3, a 64 cm-1 frequency difference reasonably reproduced by density functional theory calculations. These values are, respectively, the lowest and the highest frequencies observed thus far for nonheme high-valent Fe═O complexes. Extended X-ray absorption fine structure analysis of 3 reveals an Fe═O bond length of 1.59 Å, which is 0.05 Å shorter than that found in complex 2. The redox potentials of 2 and 3 are 0.44 V (measured at pH 12) and 1.19 V (measured at pH 7) versus normal hydrogen electrode, respectively, corresponding to the [FeIV(O)]2-/[FeIII(OH)]2- and [FeV(O)]-/[FeIV(O)]2- couples. Consistent with its higher potential (even after correcting for the pH difference), 3 oxidizes benzyl alcohol at pH 7 with a second-order rate constant that is 2500-fold bigger than that for 2 at pH 12. Furthermore, 2 exhibits a classical kinteic isotope effect (KIE) of 3 in the oxidation of benzyl alcohol to benzaldehyde versus a nonclassical KIE of 12 for 3, emphasizing the reactivity differences between 2 and 3.

9.
Chem Commun (Camb) ; 59(19): 2755-2758, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36779358

RESUMO

An oxoiron(IV) cation radical is generated upon two-electron oxidation of an iron(III) complex bearing an electron-rich methoxy substituted bTAML framework and thoroughly characterized via multiple spectroscopic techniques and density functional theory (DFT). Reactivity studies demonstrate faster rates for oxidation of strong aliphatic sp3 C-H bonds than for its corresponding oxoiron(V) valence tautomer.

10.
J Phys Chem Lett ; 12(12): 3066-3073, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33750139

RESUMO

Charged functional groups in the secondary coordination sphere (SCS) of a heterogeneous nanoparticle or homogeneous electrocatalyst are of growing interest due to enhancements in reactivity that derive from specific interactions that stabilize substrate binding or charged intermediates. At the same time, accurate benchmarking of electrocatalyst systems most often depends on the development of linear free-energy scaling relationships. However, the thermodynamic axis in those kinetic-thermodynamic correlations is most often obtained by a direct electrochemical measurement of the catalyst redox potential and might be influenced by electrostatic effects of a charged SCS. In this report, we systematically probe positive charges in a SCS and their electrostatic contributions to the electrocatalyst redox potential. A series of 11 iron carbonyl clusters modified with charged and uncharged ligands was probed, and a linear correlation between the νCO absorption band energy and electrochemical redox potentials is observed except where the SCS is positively charged.

11.
Chem Sci ; 11(43): 11877-11885, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34094416

RESUMO

An efficient electrochemical method for the selective oxidation of C-H bonds of unactivated alkanes (BDE ≤97 kcal mol-1) and C[double bond, length as m-dash]C bonds of alkenes using a biomimetic iron complex, [(bTAML)FeIII-OH2]-, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes is reported. The O-atom of water remains the source of O-incorporation in the product formed after oxidation. The products formed upon oxidation of C-H bonds display very high regioselectivity (75 : 1, 3° : 2° for adamantane) and stereo-retention (RC ∼99% for cyclohexane derivatives). The substrate scope includes natural products such as cedryl acetate and ambroxide. For alkenes, epoxides were obtained as the sole product. Mechanistic studies show the involvement of a high-valent oxoiron(v) species, [(bTAML)FeV(O)]- formed via PCET (overall 2H+/2e-) from [(bTAML)FeIII-OH2]- in CPE at 0.80 V (vs. Ag/AgNO3). Moreover, electrokinetic studies for the oxidation of C-H bonds indicate a second-order reaction with the C-H abstraction by oxoiron(v) being the rate-determining step.

12.
Chem Commun (Camb) ; 52(79): 11787-11790, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27709215

RESUMO

Biuret-modified tetraamidomacrocyclic cobalt complex [CoIII-bTAML]- is shown to catalyze electrochemical water oxidation at basic pH leading to the formation of O2. Electrochemical and spectroscopic studies indicate a high valent cobalt oxo intermediate isoelectronic to CoV(O) as the active oxidant. The kinetic isotope effect of 8.63 indicates an atom proton transfer mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA