Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 19(9): 3806-3814, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36906845

RESUMO

INTRODUCTION: Resting-state functional magnetic resonance imaging (fMRI) graph theory may help detect subtle functional connectivity changes affecting memory prior to impairment. METHODS: Cognitively normal apolipoprotein E (APOE) ε4 carriers/noncarriers underwent longitudinal cognitive assessment and one-time MRI. The relationship of left/right hippocampal connectivity and memory trajectory were compared between carriers/noncarriers. RESULTS: Steepness of verbal memory decline correlated with decreased connectivity in the left hippocampus, only among APOE ε4 carriers. Right hippocampal metrics were not correlated with memory and there were no significant correlations in the noncarriers. Verbal memory decline correlated with left hippocampal volume loss for both carriers and noncarriers, with no other significant volumetric findings. DISCUSSION: Findings support early hippocampal dysfunction in intact carriers, the AD disconnection hypothesis, and left hippocampal dysfunction earlier than the right. Combining lateralized graph theoretical metrics with a sensitive measure of memory trajectory allowed for detection of early-stage changes in APOE ε4 carriers before symptoms of mild cognitive impairment are present. HIGHLIGHTS: Graph theory connectivity detects preclinical hippocampal changes in APOE ε4 carriers. The AD disconnection hypothesis was supported in unimpaired APOE ε4 carriers. Hippocampal dysfunction starts asymmetrically on the left.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Heterozigoto , Hipocampo/patologia , Memória , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/genética , Imageamento por Ressonância Magnética , Doença de Alzheimer/patologia , Testes Neuropsicológicos
2.
Mem Cognit ; 48(5): 772-787, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32078735

RESUMO

Free-recall tasks suggest human memory foraging may follow a heavy-tailed distribution, such as a Lévy flight, patch foraging, or area-restricted search - walk procedures that are common in other activities of cognitive agents, such as food foraging in both animals and humans. To date, research merely equates memory foraging with hunting in the physical world based on similarities in statistical structure. The current work supports that memory foraging follows a heavy-tailed distribution by using categories with quantitative distances between each item: countries, which have physical distances, and animals, from which cognitive distances can be derived using a multidimensional scaling (MDS) procedure. Likewise, inter-item lag times follow a heavy-tailed distribution. The current work also demonstrates that inter-item distances and times are positively correlated, suggesting the organization of items in memory may be akin to the organization of a physical landscape. Finally, both studies show that participants' original, heavy-tailed lists of countries and animal names produce shorter overall distances traveled than random selection. Human memory foraging follows the same pattern as foraging in the natural world - perhaps because exposure to ecological settings informs our inner cognitive experience - leading to a processing and retrieval time benefit.


Assuntos
Memória , Animais , Humanos
3.
Front Behav Neurosci ; 8: 294, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25249951

RESUMO

We constructed an 11-arm, walk-through, human radial-arm maze (HRAM) as a translational instrument to compare existing methodology in the areas of rodent and human learning and memory research. The HRAM, utilized here, serves as an intermediary test between the classic rat radial-arm maze (RAM) and standard human neuropsychological and cognitive tests. We show that the HRAM is a useful instrument to examine working memory ability, explore the relationships between rodent and human memory and cognition models, and evaluate factors that contribute to human navigational ability. One-hundred-and-fifty-seven participants were tested on the HRAM, and scores were compared to performance on a standard cognitive battery focused on episodic memory, working memory capacity, and visuospatial ability. We found that errors on the HRAM increased as working memory demand became elevated, similar to the pattern typically seen in rodents, and that for this task, performance appears similar to Miller's classic description of a processing-inclusive human working memory capacity of 7 ± 2 items. Regression analysis revealed that measures of working memory capacity and visuospatial ability accounted for a large proportion of variance in HRAM scores, while measures of episodic memory and general intelligence did not serve as significant predictors of HRAM performance. We present the HRAM as a novel instrument for measuring navigational behavior in humans, as is traditionally done in basic science studies evaluating rodent learning and memory, thus providing a useful tool to help connect and translate between human and rodent models of cognitive functioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA