Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 93(5): 1199-1207, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35273370

RESUMO

BACKGROUND: Neuroprognostication in neonates with neonatal encephalopathy (NE) may be enhanced by early serial measurement of a panel of four brain-specific biomarkers. METHODS: To evaluate serum biomarkers, 40 NE samples and 37 healthy neonates from a biorepository were analyzed. Blood samples were collected at 0-6, 12, 24, 48, and 96 h of life. MRI provided a short-term measure of injury. Long-term outcomes included death or a Bayley III score at 17-24 months of age. RESULTS: Glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase-L1 (UCH-L1), and Tau peaked at 0-6 h of life, while neurofilament light chain (NFL) peaked at 96 h of life. These four marker concentrations at 96 h of life differentiated moderate/severe from none/mild brain injury by MRI, while GFAP and Tau showed early discrimination. For long-term outcomes, GFAP, NFL, Tau, and UCH-L1 could differentiate a poor outcome vs good outcome as early as 0-6 h of life, depending on the Bayley domain, and a combination of the four markers enhanced the sensitivity and specificity. Machine learning trajectory analyses identified upward trajectory patients with a high concordance to poor outcomes. CONCLUSION: GFAP, NFL, Tau, and UCH-L1 may be of neuroprognostic significance after NE. IMPACT: Serial measurements of GFAP, NFL, Tau, and UCH-L1 show promise in aiding the bedside clinician in making treatment decisions in neonatal encephalopathy. The panel of four neuroproteins increased the ability to predict neurodevelopmental outcomes. The study utilized a trajectory analysis that enabled predictive modeling. A panel approach provides the bedside clinician with objective data to individualize care. This study provides the foundation to develop a point of care device in the future.


Assuntos
Lesões Encefálicas , Filamentos Intermediários , Recém-Nascido , Humanos , Proteína Glial Fibrilar Ácida , Ubiquitina Tiolesterase , Biomarcadores
2.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012232

RESUMO

Glial fibrillary acidic protein (GFAP) is the major intermediate filament III protein of astroglia cells which is upregulated in traumatic brain injury (TBI). Here we reported that GFAP is truncated at both the C- and N-terminals by cytosolic protease calpain to GFAP breakdown products (GBDP) of 46-40K then 38K following pro-necrotic (A23187) and pro-apoptotic (staurosporine) challenges to primary cultured astroglia or neuron-glia mixed cells. In addition, with another pro-apoptotic challenge (EDTA) where caspases are activated but not calpain, GFAP was fragmented internally, generating a C-terminal GBDP of 20 kDa. Following controlled cortical impact in mice, GBDP of 46-40K and 38K were formed from day 3 to 28 post-injury. Purified GFAP protein treated with calpain-1 and -2 generates (i) major N-terminal cleavage sites at A-56*A-61 and (ii) major C-terminal cleavage sites at T-383*Q-388, producing a limit fragment of 38K. Caspase-6 treated GFAP was cleaved at D-78/R-79 and D-225/A-226, where GFAP was relatively resistant to caspase-3. We also derived a GBDP-38K N-terminal-specific antibody which only labels injured astroglia cell body in both cultured astroglia and mouse cortex and hippocampus after TBI. As a clinical translation, we observed that CSF samples collected from severe human TBI have elevated levels of GBDP-38K as well as two C-terminally released GFAP peptides (DGEVIKES and DGEVIKE). Thus, in addition to intact GFAP, both the GBDP-38K as well as unique GFAP released C-terminal proteolytic peptides species might have the potential in tracking brain injury progression.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Astrócitos/metabolismo , Biomarcadores , Calpaína/metabolismo , Caspase 6 , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Camundongos , Peptídeo Hidrolases , Peptídeos
3.
Diagnostics (Basel) ; 13(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238298

RESUMO

Acute traumatic spinal cord injury (SCI) is recognized as a global problem that can lead to a range of acute and secondary complications impacting morbidity and mortality. There is still a lack of reliable diagnostic and prognostic biomarkers in patients with SCI that could help guide clinical care and identify novel therapeutic targets for future drug discovery. The aim of this prospective controlled study was to determine the cerebral spinal fluid (CSF) and serum profiles of 10 biomarkers as indicators of SCI diagnosis, severity, and prognosis to aid in assessing appropriate treatment modalities. CSF and serum samples of 15 SCI and ten healthy participants were included in the study. The neurological assessments were scored on admission and at discharge from the hospital using the American Spinal Injury Association Impairment Score (AIS) grades. The CSF and serum concentrations of SBDP150, S100B, GFAP, NF-L, UCHL-1, Tau, and IL-6 were significantly higher in SCI patients when compared with the control group. The CSF GBDP 38/44K, UCHL-L1, S100B, GFAP, and Tau levels were significantly higher in the AIS A patients. This study demonstrated a strong correlation between biomarker levels in the diagnosis and injury severity of SCI but no association with short-term outcomes. Future prospective controlled studies need to be done to support the results of this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA