Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005190

RESUMO

Bio-oil upgrading to produce biofuels and chemicals has become an attractive topic over the past decade. However, the design of cost- and performance-effective catalysts for commercial-scale production remains a challenge. Herein, commercial titania (TiO2) was used as the support of cobalt (Co)-based catalysts (Co/TiO2) due to its low cost, high availability, and practicability for commercialization in the future. The Co/TiO2 catalysts were made with two different forms of TiO2 (anatase [TiO2-A] and rutile [TiO2-R]) and comparatively evaluated in the hydrodeoxygenation (HDO) of 4-propylguaicol (4PG), a lignin-derived model compound. Both Co/TiO2 catalysts promoted the HDO of 4PG following a similar pathway, but the Co/TiO2-R catalyst exhibited a higher activity in the early stages of the reaction due to the formation of abundant Ti3+ species, as detected by X-ray photoelectron spectroscopy (XPS) and hydrogen-temperature programed reduction (H2-TPR) analyses. On the other hand, the Co/TiO2-A catalyst possessed a higher acidity that enhanced propylcyclohexane production at prolonged reaction times. In terms of reusability, the Co/TiO2-A catalyst showed a higher stability (less Co leaching) and reusability compared to Co/TiO2-R, as confirmed by transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analyses. The HDO of the real bio-oil derived from pyrolysis of Leucaena leucocephala revealed that the Co/TiO2-A catalyst could convert high oxygenated aromatics (methoxyphenols, dimethoxyphenols, and benzenediols) to phenols and enhanced the phenols content, hinting at its potential to produce green chemicals from bio-feedstock.

2.
Biotechnol Biofuels Bioprod ; 16(1): 17, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740699

RESUMO

An oleaginous yeast Rhodotorula paludigena CM33 was pyrolyzed for the first time to produce bio-oil and biochar applying a bench-scale reactor. The strain possessed a high lipid content with the main fatty acids similar to vegetable oils. Prior to pyrolysis, the yeast was dehydrated using a spray dryer. Pyrolysis temperatures in the range of 400-600 °C were explored in order to obtain the optimal condition for bio-oil and biochar production. The result showed that a maximum bio-oil yield of 60% was achieved at 550 °C. Simulated distillation gas chromatography showed that the bio-oil contained 2.6% heavy naphtha, 20.7% kerosene, 24.3% biodiesel, and 52.4% fuel oil. Moreover, a short path distillation technique was attempted in order to further purify the bio-oil. The biochar was also characterized for its properties. The consequence of this work could pave a way for the sustainable production of solid and liquid biofuel products from the oleaginous yeast.

3.
Bioresour Technol ; 258: 88-97, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29524691

RESUMO

Wet torrefaction (WT) possesses some advantages over dry torrefaction (DT). In this study, a comparative analysis of torrefied corn stalk from WT and DT was conducted along with an investigation of their pyrolysis properties under optimal conditions for biomass pyrolysis polygeneration. Compared with DT, WT removed 98% of the ash and retained twice the amount of hydrogen. The impacts of DT and WT on the biomass macromolecular structure was also found to be different using two-dimensional perturbation correlation infrared spectroscopy (2D-PCIS). WT preserved the active hydroxyl groups and rearranged the macromolecule structure to allow cellulose to be more ordered, while DT removed these active hydroxyl groups and formed inter-crosslinking structures in macromolecules. Correspondingly, the bio-char yield after WT was lower than DT but the bio-char quality was upgraded due to high ash removal. Furthermore, higher bio-oil yield, higher sugar content, and higher H2 generation, were obtained after WT.


Assuntos
Óleos de Plantas , Polifenóis , Zea mays , Biocombustíveis , Biomassa , Temperatura Alta
4.
Bioresour Technol ; 139: 34-42, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23644068

RESUMO

Fast pyrolysis of cassava rhizome was performed in a bench-scale fluidised-bed reactor unit incorporated with a cross-flow moving-bed granular filter. The objective of this research was to examine several process parameters including the granular size (425-1160 µm) and mass flow rate (0-12 g/min) as well as the number of the filtration stages (1-2 stages) on yields and properties of bio-oil. The results showed that the bio-oil yield decreased from 57.7 wt.% to 42.0-49.2 wt.% when increasing the filter media size, the mass flow rate and the filtration stage number. The effect of the process parameters on various properties of bio-oil is thoroughly discussed. In general, the bio-oil quality in terms of the solids content, ash content, initial viscosity, viscosity change and ageing rate could be enhanced by the hot vapour granular filtration. Therefore, bio-oil of high stability could be produced by the pyrolysis reactor configuration designed in this work.


Assuntos
Biocombustíveis/análise , Biomassa , Biotecnologia/métodos , Filtração/instrumentação , Temperatura Alta , Óleos/química , Reologia , Biotecnologia/instrumentação , Carvão Vegetal/química , Elementos Químicos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Viscosidade
5.
Bioresour Technol ; 139: 343-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23669070

RESUMO

A counter-rotating twin screw reactor unit was investigated for its behaviour in the pyrolysis of cassava rhizome biomass. Several parameters such as pyrolysis temperature in the range of 500-700°C, biomass particle size of <0.6mm, the use of sand as heat transfer medium, nitrogen flow rate of 4-10 L/min and nitrogen pressure of 1-3 bar were thoroughly examined. It was found that the pyrolysis temperature of 550°C could maximise the bio-oil yield (50 wt.%). The other optimum parameters for maximising the bio-oil yield were the biomass particle size of 0.250-0.425 mm, the nitrogen flow rate of 4 L/min and the nitrogen pressure of 2 bar. The use of the heat transfer medium could increase the bio-oil yield to a certain extent. Moreover, the water content of bio-oil produced with the counter-rotating twin screw reactor was relatively low, whereas the solids content was relatively high, compared to some other reactor configurations.


Assuntos
Reatores Biológicos , Biotecnologia/instrumentação , Biotecnologia/métodos , Manihot/química , Rizoma/química , Rotação , Temperatura , Biocombustíveis , Biomassa , Gases/química , Temperatura Alta , Tamanho da Partícula , Pressão , Reologia
6.
Bioresour Technol ; 116: 107-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22609663

RESUMO

This article reports experimental results of rapid or fast pyrolysis of rice straw (RS) and rice husk (RH) in a fluidised-bed reactor unit incorporated with a hot vapour filter. The objective of this research was to investigate the effects of pyrolysis temperatures and the use of glass wool hot vapour filtration on pyrolysis products. The results showed that the optimum pyrolysis temperatures for RS and RH were 405 and 452 °C, which gave maximum bio-oil yields of 54.1 and 57.1 wt.% on dry biomass basis, respectively. The use of the hot filter led to a reduction of 4-7 wt.% bio-oil yield. Nevertheless, the glass wool hot filtered bio-oils appeared to have better quality in terms of initial viscosity, solids content and ash content than the non-filtered ones.


Assuntos
Biocombustíveis/análise , Biotecnologia/métodos , Filtração/instrumentação , Vidro/química , Temperatura Alta , Oryza/química , Óleos de Plantas/síntese química , Biomassa , Reatores Biológicos , Biotecnologia/instrumentação , Elementos Químicos , Concentração de Íons de Hidrogênio , Termogravimetria , Viscosidade , Volatilização , Resíduos/análise , Água/química
7.
Bioresour Technol ; 102(2): 1959-67, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20864338

RESUMO

Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability.


Assuntos
Biocombustíveis/análise , Biomassa , Reatores Biológicos/microbiologia , Biotecnologia/instrumentação , Biotecnologia/métodos , Manihot/química , Óleos/síntese química , Fracionamento Químico , Elementos Químicos , Concentração de Íons de Hidrogênio , Peso Molecular , Temperatura , Água/química
8.
Nanoscale Res Lett ; 6(1): 315, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21711856

RESUMO

This article reports a recent study on the application of a two-phase closed thermosyphon (TPCT) in a thermosyphon for economizer (TPEC). The TPEC had three sections of equal size; the evaporator, the adiabatic section, and the condenser, of 250 mm × 250 mm × 250 mm (W × L × H). The TPCT was a steel tube of 12.7-mm ID. The filling ratios chosen to study were 30, 50, and 80% with respect to the evaporator length. The volumetric flow rates for the coolant (in the condenser) were 1, 2.5, and 5 l/min. Five working fluids investigated were: water, water-based silver nanofluid with silver concentration 0.5 w/v%, and the nanofluid (NF) mixed with 0.5, 1, and 1.5 w/v% of oleic acid (OA). The operating temperatures were 60, 70, and 80°C. Experimental data showed that the TPEC gave the highest heat flux of about 25 kW/m2 and the highest effectiveness of about 0.3 at a filling ratio of 50%, with the nanofluid containing 1 w/v% of OA. It was further found that the effectiveness of nanofluid and the OA containing nanofluids were superior in effectiveness over water in all experimental conditions came under this study. Moreover, the presence of OA had clearly contributed to raise the effectiveness of the nanofluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA