Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood Cancer Discov ; 5(1): 56-73, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-37934799

RESUMO

Immunomodulatory drugs (IMiD) are a backbone therapy for multiple myeloma (MM). Despite their efficacy, most patients develop resistance, and the mechanisms are not fully defined. Here, we show that IMiD responses are directed by IMiD-dependent degradation of IKZF1 and IKZF3 that bind to enhancers necessary to sustain the expression of MYC and other myeloma oncogenes. IMiD treatment universally depleted chromatin-bound IKZF1, but eviction of P300 and BRD4 coactivators only occurred in IMiD-sensitive cells. IKZF1-bound enhancers overlapped other transcription factor binding motifs, including ETV4. Chromatin immunoprecipitation sequencing showed that ETV4 bound to the same enhancers as IKZF1, and ETV4 CRISPR/Cas9-mediated ablation resulted in sensitization of IMiD-resistant MM. ETV4 expression is associated with IMiD resistance in cell lines, poor prognosis in patients, and is upregulated at relapse. These data indicate that ETV4 alleviates IKZF1 and IKZF3 dependency in MM by maintaining oncogenic enhancer activity and identify transcriptional plasticity as a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE: We show that IKZF1-bound enhancers are critical for IMiD efficacy and that the factor ETV4 can bind the same enhancers and substitute for IKZF1 and mediate IMiD resistance by maintaining MYC and other oncogenes. These data implicate transcription factor redundancy as a previously unrecognized mode of IMiD resistance in MM. See related article by Welsh, Barwick, et al., p. 34. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.


Assuntos
Mieloma Múltiplo , Humanos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Agentes de Imunomodulação , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitina-Proteína Ligases/uso terapêutico
2.
NPJ Genom Med ; 8(1): 3, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702834

RESUMO

Despite advancements in understanding the pathophysiology of Multiple Myeloma (MM), the cause of rapid progressing disease in a subset of patients is still unclear. MM's progression is facilitated by complex interactions with the surrounding bone marrow (BM) cells, forming a microenvironment that supports tumor growth and drug resistance. Understanding the immune microenvironment is key to identifying factors that promote rapid progression of MM. To accomplish this, we performed a multi-center single-cell RNA sequencing (scRNA-seq) study on 102,207 cells from 48 CD138- BM samples collected at the time of disease diagnosis from 18 patients with either rapid progressing (progression-free survival (PFS) < 18 months) or non-progressing (PFS > 4 years) disease. Comparative analysis of data from three centers demonstrated similar transcriptome profiles and cell type distributions, indicating subtle technical variation in scRNA-seq, opening avenues for an expanded multicenter trial. Rapid progressors depicted significantly higher enrichment of GZMK+ and TIGIT+ exhausted CD8+ T-cells (P = 0.022) along with decreased expression of cytolytic markers (PRF1, GZMB, GNLY). We also observed a significantly higher enrichment of M2 tolerogenic macrophages in rapid progressors and activation of pro-proliferative signaling pathways, such as BAFF, CCL, and IL16. On the other hand, non-progressive patients depicted higher enrichment for immature B Cells (i.e., Pre/Pro B cells), with elevated expression for markers of B cell development (IGLL1, SOX4, DNTT). This multi-center study identifies the enrichment of various pro-tumorigenic cell populations and pathways in those with rapid progressing disease and further validates the robustness of scRNA-seq data generated at different study centers.

3.
Clin Cancer Res ; 27(11): 3178-3189, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33731366

RESUMO

PURPOSE: Multiple myeloma is a malignancy of plasma cells. Extensive genetic and transcriptional characterization of myeloma has identified subtypes with prognostic and therapeutic implications. In contrast, relatively little is known about the myeloma epigenome. EXPERIMENTAL DESIGN: CD138+CD38+ myeloma cells were isolated from fresh bone marrow aspirate or the same aspirate after freezing for 1-6 months. Gene expression and chromatin accessibility were compared between fresh and frozen samples by RNA sequencing (RNA-seq) and assay for transpose accessible chromatin sequencing (ATAC-seq). Chromatin accessible regions were used to identify regulatory RNA expression in more than 700 samples from newly diagnosed patients in the Multiple Myeloma Research Foundation CoMMpass trial (NCT01454297). RESULTS: Gene expression and chromatin accessibility of cryopreserved myeloma recapitulated that of freshly isolated samples. ATAC-seq performed on a series of biobanked specimens identified thousands of chromatin accessible regions with hundreds being highly coordinated with gene expression. More than 4,700 of these chromatin accessible regions were transcribed in newly diagnosed myelomas from the CoMMpass trial. Regulatory element activity alone recapitulated myeloma gene expression subtypes, and in particular myeloma subtypes with immunoglobulin heavy chain translocations were defined by transcription of distal regulatory elements. Moreover, enhancer activity predicted oncogene expression implicating gene regulatory mechanisms in aggressive myeloma. CONCLUSIONS: These data demonstrate the feasibility of using biobanked specimens for retrospective studies of the myeloma epigenome and illustrate the unique enhancer landscapes of myeloma subtypes that are coupled to gene expression and disease progression.


Assuntos
Cromatina/genética , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica , Mieloma Múltiplo/genética , RNA/genética , Progressão da Doença , Epigenoma , Estudos de Viabilidade , Humanos , Prognóstico , Análise de Sequência de RNA
5.
Am J Med Sci ; 345(6): 478-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23377166

RESUMO

A 56-year-old woman presented to the cardiology clinic with a 7-day history of dyspnea and chest pressure. An echocardiogram showed a flail posterior mitral valve leaflet, and subsequent left heart catheterization showed complete occlusion of the first obtuse marginal coronary artery. Further investigation demonstrated the culprit lesion to be ischemic partial rupture of the posteromedial papillary muscle. Timely recognition of this condition allowed for an optimal clinical outcome. In this Cardiology Grand Rounds, the authors further describe the above presentation of ischemic partial papillary muscle rupture and provide a brief review of the pathophysiology, diagnosis and treatment of this condition.


Assuntos
Ruptura Cardíaca Pós-Infarto/complicações , Insuficiência da Valva Mitral/etiologia , Infarto do Miocárdio/complicações , Músculos Papilares/fisiopatologia , Ponte de Artéria Coronária , Feminino , Ruptura Cardíaca Pós-Infarto/cirurgia , Implante de Prótese de Valva Cardíaca , Humanos , Pessoa de Meia-Idade , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/cirurgia , Infarto do Miocárdio/cirurgia , Resultado do Tratamento
6.
Dev Dyn ; 236(8): 2172-80, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17584857

RESUMO

microRNAs (miRNAs) are small (approximately 22 nucleotide) non-coding RNAs that regulate gene expression at the post-transcriptional level, typically by inhibiting translation. The genes encoding these small RNAs are estimated to comprise approximately 2-3% of animal genomes yet potentially regulate a majority of protein-coding genes including those involved in cell specification and development. A key remaining question is to identify target mRNAs regulated by microRNAs. As a means to identify potential targets, we designed a sensitive microarray to analyze global miRNA expression patterns at twelve developmental stages in zebrafish. Further, we conducted arrays on zebrafish embryos treated with small molecule inhibitors of the Hedgehog and Notch signaling pathways to enable identification of differentially expressed miRNAs that target genes controlling key developmental pathways during early embryogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/antagonistas & inibidores , MicroRNAs/genética , Receptores Notch/antagonistas & inibidores , Transdução de Sinais , Animais , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , RNA Mensageiro/análise , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA