Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Alcohol Clin Exp Res ; 45(10): 2006-2016, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453331

RESUMO

BACKGROUND: Alcohol intoxication produces ataxia by affecting the cerebellum, which coordinates movements. Fragile X mental retardation (FMR) protein is a complex regulator of RNA and synaptic plasticity implicated in fragile X-associated tremor/ataxia syndrome, which features ataxia and increased Fmr1 mRNA expression resulting from epigenetic dysregulation of FMRP. We recently demonstrated that acute ethanol-induced ataxia is associated with increased cerebellar Fmr1 gene expression via histone modifications in rats, but it is unknown whether similar behavioral and molecular changes occur following chronic ethanol exposure. Here, we investigated the effects of chronic ethanol exposure on ataxia and epigenetically regulated changes in Fmr1 expression in the cerebellum. METHODS: Male adult Sprague-Dawley rats were trained on the accelerating rotarod and then fed with chronic ethanol or a control Lieber-DeCarli diet while undergoing periodic behavioral testing for ataxia during ethanol exposure and withdrawal. Cerebellar tissues were analyzed for expression of the Fmr1 gene and its targets using a real-time quantitative polymerase chain reaction assay. The epigenetic regulation of Fmr1 was also investigated using a chromatin immunoprecipitation assay. RESULTS: Ataxic behavior measured by the accelerating rotarod behavioral test developed during chronic ethanol treatment and persisted at both the 8-h and 24-h withdrawal time points compared to control diet-fed rats. In addition, chronic ethanol treatment resulted in up-regulated expression of Fmr1 mRNA and increased activating epigenetic marks H3K27 acetylation and H3K4 trimethylation at 2 sites within the Fmr1 promoter. Finally, measurement of the expression of relevant FMRP mRNA targets in the cerebellum showed that chronic ethanol up-regulated cAMP response element binding (CREB) Creb1, Psd95, Grm5, and Grin2b mRNA expression without altering Grin2a, Eaa1, or histone acetyltransferases CREB binding protein (Cbp) or p300 mRNA transcripts. CONCLUSIONS: These results suggest that epigenetic regulation of Fmr1 and subsequent FMRP regulation of target mRNA transcripts constitute neuroadaptations in the cerebellum that may underlie the persistence of ataxic behavior during chronic ethanol exposure and withdrawal.


Assuntos
Depressores do Sistema Nervoso Central/efeitos adversos , Ataxia Cerebelar/induzido quimicamente , Cerebelo/efeitos dos fármacos , Etanol/efeitos adversos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Intoxicação Alcoólica/etiologia , Intoxicação Alcoólica/metabolismo , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Ataxia Cerebelar/metabolismo , Cerebelo/metabolismo , Epigênese Genética/efeitos dos fármacos , Etanol/administração & dosagem , Código das Histonas/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley
2.
PLoS One ; 19(6): e0304876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848336

RESUMO

We have identified an acyl-carrier protein, Rv0100, that is up-regulated in a dormancy model. This protein plays a critical role in the fatty acid biosynthesis pathway, which is important for energy storage and cell wall synthesis in Mycobacterium tuberculosis (MTB). Knocking out the Rv0100 gene resulted in a significant reduction of growth compared to wild-type MTB in the Wayne model of non-replicating persistence. We have also shown that Rv0100 is essential for the growth and survival of this pathogen during infection in mice and a macrophage model. Furthermore, knocking out Rv0100 disrupted the synthesis of phthiocerol dimycocerosates, the virulence-enhancing lipids produced by MTB and Mycobacterium bovis. We hypothesize that this essential gene contributes to MTB virulence in the state of latent infection. Therefore, inhibitors targeting this gene could prove to be potent antibacterial agents against this pathogen.


Assuntos
Proteína de Transporte de Acila , Proteínas de Bactérias , Mycobacterium tuberculosis , Animais , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila/genética , Macrófagos/microbiologia , Macrófagos/metabolismo , Virulência , Regulação Bacteriana da Expressão Gênica , Tuberculose/microbiologia , Lipídeos/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-37697074

RESUMO

The hypothalamic neuropeptide oxytocin (OT) is well known for its prosocial, anxiolytic, and ameliorating effects on various psychiatric conditions, including alcohol use disorder (AUD). In this chapter, we will first introduce the basic neurophysiology of the OT system and its interaction with other neuromodulatory and neurotransmitter systems in the brain. Next, we provide an overview over the current state of research examining the effects of acute and chronic alcohol exposure on the OT system as well as the effects of OT system manipulation on alcohol-related behaviors in rodents and humans. In rodent models of AUD, OT has been repeatedly shown to reduce ethanol consumption, particularly in models of acute alcohol exposure. In humans however, the results of OT administration on alcohol-related behaviors are promising but not yet conclusive. Therefore, we further discuss several physiological and methodological limitations to the effective application of OT in the clinic and how they may be mitigated by the application of synthetic OT receptor (OTR) agonists. Finally, we discuss the potential efficacy of cutting-edge pharmacology and gene therapies designed to specifically enhance endogenous OT release and thereby rescue deficient expression of OT in the brains of patients with severe forms of AUD and other incurable mental disorders.

4.
Nat Commun ; 14(1): 1066, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828816

RESUMO

The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.


Assuntos
Neuralgia , Ocitocina , Ratos , Masculino , Feminino , Animais , Ocitocina/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Neurônios/metabolismo , Analgésicos/farmacologia , Neuralgia/metabolismo
5.
STAR Protoc ; 3(1): 101159, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35199029

RESUMO

Astrocytes are glial cells that exhibit calcium signaling-mediated activity. Here, we present a protocol to monitor and manipulate astrocyte calcium activity from mouse amygdala slices. In the first part of this protocol, we describe the procedure of astrocyte calcium imaging. In the second part, we detail how to disrupt astrocyte calcium activity by patch-clamp-mediated loading of BAPTA. These two approaches are presented separately but they can also be used simultaneously to monitor the effects of disruption on an astrocyte network. For complete details on the use and execution of this protocol, please refer to Wahis et al. (2021).


Assuntos
Astrócitos , Cálcio , Tonsila do Cerebelo/diagnóstico por imagem , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Cálcio da Dieta , Ácido Egtázico/análogos & derivados , Camundongos
6.
Neuropharmacology ; 201: 108836, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648771

RESUMO

Alcohol use disorder (AUD) constitutes a major burden to global health. Recently, the translational success of animal models of AUD has come under increased scrutiny. Efforts to refine models to gain a more precise understanding of the neurobiology of addiction are warranted. Appetitive responding for ethanol (seeking) and its consumption (taking) are governed by distinct neurobiological mechanisms. However, consumption is often inferred from appetitive responding in operant ethanol self-administration paradigms, preventing identification of distinct experimental effects on seeking and taking. In the present study, male Long-Evans, Wistar, and Sprague-Dawley rats were trained to lever press for ethanol using a lickometer-equipped system that precisely measures both appetitive and consummatory behavior. Three distinct operant phenotypes emerged during training: 1) Drinkers, who lever press and consume ethanol; 2) Responders, who lever press but consume little to no ethanol; and 3) Non-responders, who do not lever press. While the prevalence of each phenotype differed across strains, appetitive and consummatory behavior was similar across strains within each phenotype. Appetitive and consummatory behaviors were significantly correlated in Drinkers, but not Responders. Analysis of drinking microstructure showed that greater consumption in Drinkers relative to Responders is due to increased incentive for ethanol rather than increased palatability. Importantly, withdrawal from chronic ethanol exposure resulted in a significant increase in appetitive responding in both Drinkers and Responders, but only Drinkers exhibited a concomitant increase in ethanol consumption. Together, these data reveal important strain differences in appetitive and consummatory responding for ethanol and uncover the presence of distinct operant phenotypes.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/psicologia , Comportamento Apetitivo/fisiologia , Comportamento Aditivo/psicologia , Comportamento Animal/fisiologia , Condicionamento Operante/fisiologia , Comportamento Consumatório/fisiologia , Comportamento de Procura de Droga/fisiologia , Etanol/administração & dosagem , Fenótipo , Autoadministração/psicologia , Animais , Modelos Animais de Doenças , Masculino , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Wistar
7.
8.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 10): 646-651, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31584013

RESUMO

Acyl carrier proteins (ACPs) are important components in fatty-acid biosynthesis in prokaryotes. Rv0100 is predicted to be an essential ACP in Mycobacterium tuberculosis, the pathogen that is the causative agent of tuberculosis, and therefore has the potential to be a novel antituberculosis drug target. Here, the successful cloning and purification of Rv0100 using Mycobacterium smegmatis as a host is reported. Crystals of the purified protein were obtained that diffracted to a resolution of 1.9 Å. Overall, this work lays the foundation for the future pursuit of drug discovery and development against this potentially novel drug target.


Assuntos
Proteína de Transporte de Acila/química , Proteínas de Bactérias/química , Cristalização , Mycobacterium tuberculosis/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cristalografia por Raios X , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
9.
Psychiatry Res Neuroimaging ; 249: 113-21, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26922156

RESUMO

Posttraumatic stress disorder (PTSD) - a debilitating disorder characterized by severe deficits in emotion regulation - is prevalent among U.S. military veterans. Research into the pathophysiology of PTSD has focused primarily on emotional reactivity, showing evidence of heightened neural response during negative affect provocation. By comparison, studies of brain functioning during the voluntary regulation of negative affect are limited. In the current study, combat-exposed U.S. military veterans with (n=25) and without (n=25) PTSD performed an emotion regulation task during electroencephalographic (EEG) recording. The late positive potential (LPP) was used as a measure of sustained attention toward, and processing of, negative and neutral pictures, and was scored prior to and after instructions to either maintain or down-regulate emotional response using the strategy of cognitive reappraisal. Results showed that groups did not differ in picture-elicited LPP amplitude either prior to or during cognitive reappraisal; reappraisal reduced the LPP in both groups over time. Time-dependent increases in LPP amplitude as a function of emotional reactivity maintenance were evident in the non-PTSD group only. This latter finding may signal PTSD-related deficits in sustained engagement with emotion-processing over the course of several seconds.


Assuntos
Distúrbios de Guerra/psicologia , Eletroencefalografia/métodos , Emoções/fisiologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Veteranos/psicologia , Adulto , Atenção/fisiologia , Distúrbios de Guerra/fisiopatologia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA