Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell ; 171(3): 522-539.e20, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28942923

RESUMO

Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of ∼40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types.


Assuntos
Neurônios GABAérgicos/citologia , Perfilação da Expressão Gênica , Análise de Célula Única , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Matriz Extracelular/metabolismo , Neurônios GABAérgicos/metabolismo , Camundongos , Receptores de GABA/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Transdução de Sinais , Sinapses , Transcrição Gênica , Zinco/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Nat Rev Neurosci ; 20(9): 563-572, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31222186

RESUMO

The phenotypic diversity of cortical GABAergic neurons is probably necessary for their functional versatility in shaping the spatiotemporal dynamics of neural circuit operations underlying cognition. Deciphering the logic of this diversity requires comprehensive analysis of multi-modal cell features and a framework of neuronal identity that reflects biological mechanisms and principles. Recent high-throughput single-cell analyses have generated unprecedented data sets characterizing the transcriptomes, morphology and electrophysiology of interneurons. We posit that cardinal interneuron types can be defined by their synaptic communication properties, which are encoded in key transcriptional signatures. This conceptual framework integrates multi-modal cell features, captures neuronal input-output properties fundamental to circuit operation and may advance understanding of the appropriate granularity of neuron types, towards a biologically grounded and operationally useful interneuron taxonomy.


Assuntos
Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Transcriptoma/fisiologia , Animais , Humanos
3.
Phys Chem Chem Phys ; 26(7): 5783-5792, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38231029

RESUMO

Bond-breaking in CCl4via dissociative electron attachment (DEA) has been studied using a velocity map imaging (VMI) spectrometer. A number of effects related to the dissociation dynamics have been revealed. The near-zero eV s-wave electron attachment, which leads to the production of Cl- anions, is accompanied by a very efficient intramolecular vibrational redistribution. This is manifested by a small fraction of the excess energy being released in the form of the fragments' translation energy. A similar effect is observed for higher-lying electronic resonances with one exception: the resonance centered around 6.2 eV leads to the production of fast Cl2- fragments and their angular distribution is forward peaking. This behavior could not be explained with a single-electronic-state model in the axial recoil approximation and is most probably caused by bending dynamics initiated by a Jahn-Teller distortion of the transient anion. The CCl2- fragment has a reverse backward-peaking angular distribution, suggesting the presence of a long-distance electron hopping mechanism between the fragments.

4.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38400311

RESUMO

Soil is a vital component of the ecosystem that drives the holistic homeostasis of the environment. Directly, soil quality and health by means of sufficient levels of soil nutrients are required for sustainable agricultural practices for ideal crop yield. Among these groups of nutrients, soil carbon is a factor which has a dominating effect on greenhouse carbon phenomena and thereby the climate change rate and its influence on the planet. It influences the fertility of soil and other conditions like enriched nutrient cycling and water retention that forms the basis for modern 'regenerative agriculture'. Implementation of soil sensors would be fundamentally beneficial to characterize the soil parameters in a local as well as global environmental impact standpoint, and electrochemistry as a transduction mode is very apt due to its feasibility and ease of applicability. Organic Matter present in soil (SOM) changes the electroanalytical behavior of moieties present that are carbon-derived. Hence, an electrochemical-based 'bottom-up' approach is evaluated in this study to track soil organic carbon (SOC). As part of this setup, soil as a solid-phase electrolyte as in a standard electrochemical cell and electrode probes functionalized with correlated ionic species on top of the metalized electrodes are utilized. The surficial interface is biased using a square pulsed charge, thereby studying the effect of the polar current as a function of the SOC profile. The sensor formulation composite used is such that materials have higher capacity to interact with organic carbon pools in soil. The proposed sensor platform is then compared against the standard combustion method for SOC analysis and its merit is evaluated as a potential in situ, on-demand electrochemical soil analysis platform.

5.
Phys Chem Chem Phys ; 25(41): 28263-28271, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37830258

RESUMO

Dissociative electron attachment (DEA) to ethanol has been probed to study fragmentation dynamics using Time-of-Flight (ToF) mass spectrometric technique. Several fragment ions, namely, H-, O-, OH-, C2H3O- and C2H5O- have been observed. Extra effort has been made to detect low mass ions (here, H-). Absolute DEA cross sections for the formation of O- and OH- have been measured for the first time using relative flow technique (RFT). The threshold energy of different dissociation channels has been calculated using density functional theory (DFT) method. By combining the experimental and theoretical data, we found evidence of hydrogen migration in the production of O and C2H3O- ions.

6.
Proc Natl Acad Sci U S A ; 117(11): 6189-6195, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123116

RESUMO

Neurofibromatosis 1 (NF1) is caused by mutations in the NF1 gene, which encodes the protein, neurofibromin, an inhibitor of Ras activity. Cortical GABAergic interneurons (CINs) are implicated in NF1 pathology, but the cellular and molecular changes to CINs are unknown. We deleted mouse Nf1 from the medial ganglionic eminence, which gives rise to both oligodendrocytes and CINs that express somatostatin and parvalbumin. Nf1 loss led to a persistence of immature oligodendrocytes that prevented later-generated oligodendrocytes from occupying the cortex. Moreover, molecular and cellular properties of parvalbumin (PV)-positive CINs were altered by the loss of Nf1, without changes in somatostatin (SST)-positive CINs. We discovered that loss of Nf1 results in a dose-dependent decrease in Lhx6 expression, the transcription factor necessary to establish SST+ and PV+ CINs, which was rescued by the MEK inhibitor SL327, revealing a mechanism whereby a neurofibromin/Ras/MEK pathway regulates a critical CIN developmental milestone.


Assuntos
Córtex Cerebral/patologia , Neurônios GABAérgicos/patologia , Interneurônios/patologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Fatores de Transcrição/metabolismo , Aminoacetonitrila/administração & dosagem , Aminoacetonitrila/análogos & derivados , Animais , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Neurônios GABAérgicos/metabolismo , Humanos , Interneurônios/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Eminência Mediana/citologia , Camundongos , Camundongos Knockout , Neurofibromatose 1/genética , Neurofibromina 1/metabolismo , Neuroglia/citologia , Parvalbuminas/metabolismo , Cultura Primária de Células , Somatostatina/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
7.
Anal Chem ; 94(30): 10617-10625, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35867902

RESUMO

Adulteration of medications is an emerging and significant threat to human health and well-being, even though adulterants are still often not considered seriously in clinical or forensic toxicology. Screening of drug adulterations is a major challenge and concern for regulatory authorities worldwide. Metformin hydrochloride, an important drug to treat diabetes, is found to be adulterated worldwide and a major reason to worry about the health and safety procedure. We have demonstrated a first-of-a-kind electrochemical biomedical device utilizing exfoliated graphene oxide (GO)─Nafion-modified customized gold screen-printed electrodes (spiral electrochemical notification-coupled electrode, SENCE), driven by electrochemical adsorptive stripping voltammetry, to identify the trace level adulteration in metformin. The GO-Nafion-SPE interface has been characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier transform infrared. Custom-made screen-printed SENCEs have been functionalized with GO nanoparticles (transducer) to obtain a fingerprint signal response of metformin using differential pulse voltammetry. A linear calibrated dose response has been obtained with n = 3 repetitions with a low limit of detection of 10 ppm for metformin. We have used the sensing response as a function of adulteration, and it is extensively supported by rigorous statistical analysis along with the help of the machine learning tool. This is a first-of-its-kind IoT-enabled electrochemical sensor and analysis platform that can detect drug adulteration as a low, medium, and high output.


Assuntos
Técnicas Eletroquímicas , Metformina , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Humanos , Limite de Detecção
8.
Phys Chem Chem Phys ; 24(35): 21020-21029, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000546

RESUMO

Complete dissociation dynamics of low-energy electron attachment to carbon disulfide have been studied using the velocity slice imaging (VSI) technique. The ion yields of the different fragment anions produced due to the dissociative electron attachment to carbon disulfide for the 5 to 11 eV incident electron energy range have been collected. Two resonances for S- ions are observed at around 6.2 eV and 7.7 eV, while only one resonance for both the CS- and S2- ions at 6.2 eV is present in this energy range. The kinetic energy and the angular distributions of these fragment negative ions at different incident electron energies around the 6.2 eV resonance have been extracted from the velocity slice images. These experimentally obtained angular distributions of different fragment anions combined with previous theoretical calculations provide a detailed picture of the breakdown of axial recoil approximation and the complete dissociation dynamics involved in this resonance.

9.
BMC Biol ; 19(1): 144, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301239

RESUMO

BACKGROUND: Alternative polyadenylation (APA) is emerging as an important mechanism in the post-transcriptional regulation of gene expression across eukaryotic species. Recent studies have shown that APA plays key roles in biological processes, such as cell proliferation and differentiation. Single-cell RNA-seq technologies are widely used in gene expression heterogeneity studies; however, systematic studies of APA at the single-cell level are still lacking. RESULTS: Here, we described a novel computational framework, SAPAS, that utilizes 3'-tag-based scRNA-seq data to identify novel poly(A) sites and quantify APA at the single-cell level. Applying SAPAS to the scRNA-seq data of phenotype characterized GABAergic interneurons, we identified cell type-specific APA events for different GABAergic neuron types. Genes with cell type-specific APA events are enriched for synaptic architecture and communications. In further, we observed a strong enrichment of heritability for several psychiatric disorders and brain traits in altered 3' UTRs and coding sequences of cell type-specific APA events. Finally, by exploring the modalities of APA, we discovered that the bimodal APA pattern of Pak3 could classify chandelier cells into different subpopulations that are from different laminar positions. CONCLUSIONS: We established a method to characterize APA at the single-cell level. When applied to a scRNA-seq dataset of GABAergic interneurons, the single-cell APA analysis not only identified cell type-specific APA events but also revealed that the modality of APA could classify cell subpopulations. Thus, SAPAS will expand our understanding of cellular heterogeneity.


Assuntos
Poliadenilação , Análise de Célula Única , Regiões 3' não Traduzidas , Neurônios GABAérgicos , Humanos , Análise de Sequência de RNA , Quinases Ativadas por p21
10.
Mikrochim Acta ; 189(6): 231, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612633

RESUMO

A novel electrochemical sensor is reported for the detection of isoprene levels in breath using a ZIF-based electrochemical nose. This sensor incorporates a hybrid detection system using gold nanoparticles encapsulated inside the ZIF-8 moiety. Breath-based analysis is widely being used for monitoring the metabolic state of the body. It is associated with the change in the concentration of volatile organic compounds and inorganic gases released endogenously and can be tracked using breath as the sample. One such volatile organic compound, isoprene, has been correlated to the presence of influenza virus or respiratory inflammation. Analytical techniques such as powder X-ray diffraction, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and tunneling electron microscopy were used to understand the structural features of the composite. The electrochemical nose system uses chronoamperometry as the transduction mechanism to monitor the diffusion kinetics of the target analyte across the electrode-electrolyte interface. The presented work demonstrates isoprene sensing with high sensitivity and specificity and a detection limit of 10 parts per billion in air. We successfully demonstrate the functionality of the ZIF-based electrochemical nose for point-of-care screening of isoprene levels by developing a prototype device using a commercially available development board. We foresee that the developed sensing platform can help in early screening for the presence of influenza virus and help control the infection rate.


Assuntos
Ouro , Nanopartículas Metálicas , Biomarcadores , Testes Respiratórios , Eletrodos
11.
Microb Pathog ; 147: 104424, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32771658

RESUMO

Most environmental parameters have no consistent effect on the expression of bacterial genes responsible for their virulence. However, as fish are poikilothermic, the possibility of temperature variation having a pronounced effect on the expression of virulence-associated gene(s) of bacteria infecting the host needs to be investigated. In this study, the diversity of virulence genes in seven Aeromonas hydrophila isolates collected from diseased fish from different parts of India was characterized, and the effect of temperature variation on the extent of expression of their virulence was investigated. All bacterial isolates were screened for a total of nine bacterial virulent genes {aerolysin, hemolysin, cytoen, outer membrane protein TS (Omp TS), elastase, flagellin, lipase, ß hemolysin and type 3 secretion system}, and the diversity in their presence or absence were marked at a particular in vitro condition. Three bacterial isolates (nos. 1, 7 and 2) were selected for further study, based on their ability to cause varied mortalities (20-100%) in Labeo rohita juveniles in intraperitoneal challenge study. Further, three isolates were injected intraperitoneally into L. rohita fingerlings at three different temperatures (i.e., 20, 28 and 37 °C) and at 6 h post-challenge, the kidney samples were collected to measure the levels of all nine bacterial virulence genes using semi-quantitative PCR. The maximum level of amplicons of virulence genes in all three A. hydrophila isolates was noticed at 28 °C as compared to 37 °C and 20 °C. It was also observed that haemolysin played a more prominent role in the expression of virulence, when compared to cytoen gene. Hence, it was concluded that water temperature does play a crucial role in governing virulence gene expression, and a temperature of 28 °C would be considered as suitable for looking into the pathogenicity of A. hydrophila for conducting any challenge study with this organism in tropical environment.


Assuntos
Aeromonas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/genética , Animais , Infecções por Bactérias Gram-Negativas/veterinária , Índia , Temperatura , Virulência/genética , Água
12.
Sensors (Basel) ; 20(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092938

RESUMO

Over the past few years, room-temperature ionic liquid (RTIL) has evolved as an important solvent-cum-electrolyte because of its high thermal stability and excellent electrochemical activity. Due to these unique properties, RTILs have been used as a solvent/electrolyte/mediator in many applications. There are many RTILs, which possess good conductivity as well as an optimal electrochemical window, thus enabling their application as a transducer for electrochemical sensors. Nitroaromatics are a class of organic compounds with significant industrial applications; however, due to their excess use, detection is a major concern. The electrochemical performance of a glassy carbon electrode modified with three different RTILs, [EMIM][BF4], [BMIM][BF4] and [EMIM][TF2N], has been evaluated for the sensing of two different nitroaromatic analytes: 2,6-dinitrotoluene (2,6 DNT) and ethylnitrobenzene (ENB). Three RTILs have been chosen such that they have either a common anion or cation amongst them. The sensory response has been measured using square wave voltammetry (SQWV). We found the transducing ability of [EMIM][BF4] to be superior compared to the other two RTILs. A low limit of detection (LOD) of 1 ppm has been achieved with a 95% confidence interval for both the analytes. The efficacy of varying the cationic and anionic species of RTIL to obtain a perfect combination has been thoroughly investigated in this work, which shows a novel selection process of RTILs for specific applications. Moreover, the results obtained from testing with a glassy carbon electrode (GCE) have been replicated using a miniaturized sensor platform that can be deployed easily for on-site sensing applications.

13.
Cereb Cortex ; 28(11): 3868-3879, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028946

RESUMO

Human mutations in CNTNAP2 are associated with an array of neuropsychiatric and neurological syndromes, including speech and language disorders, epilepsy, and autism spectrum disorder (ASD). We examined Cntnap2's expression and function in GABAergic cortical interneurons (CINs), where its RNA is present at highest levels in chandelier neurons, PV+ neurons and VIP+ neurons. In vivo functions were studied using both constitutive Cntnap2 null mice and a transplantation assay, the latter to assess cell autonomous phenotypes of medial ganglionic eminence (MGE)-derived CINs. We found that Cntnap2 constitutive null mutants had normal numbers of MGE-derived CINs, but had reduced PV+ CINs. Transplantation assays showed that Cntnap2 cell autonomously regulated the physiology of parvalbumin (PV)+, fast-spiking CINs; no phenotypes were observed in somatostatin+, regular spiking, CINs. We also tested the effects of 4 human CNTNAP2 ASD missense mutations in vivo, and found that they impaired PV+ CIN development. Together, these data reveal that reduced CNTNAP2 function impairs PV+ CINs, a cell type with important roles in regulating cortical circuits.


Assuntos
Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Alelos , Animais , Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Córtex Somatossensorial/fisiologia , Telencéfalo/crescimento & desenvolvimento
14.
Microb Pathog ; 125: 108-115, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30201592

RESUMO

Cells produce large number of antioxidant molecules to prevent reactive oxygen species-induced self-damage during microbial assault while generating simultaneously number of antimicrobial molecules to target the pathogen. The present study was aimed at looking into molecules involved in antibacterial and self-protection mechanism of a host Labeo rohita when challenged with a pathogenic bacterium Aeromonas hydrophila. Expression profiles of few of the important host antibacterial genes viz., inducible nitric oxide synthase (iNOS), lysozyme G (LysoG), apolipoprotein A-I (ApoA-I) and hepcidin, and self-defence anti-oxidant genes viz., manganese superoxide dismutase (MnSOD), catalase and glutathione peroxidases (GPx3) were examined in skin and muscle tissues of bacteria challenged fish. Transcription levels of iNOS, LysoG, ApoA-I, hepcidin, catalase, GPx3 and MnSOD were significantly upregulated (P < 0.05) in both tissues at different time points post-bacterial challenge. Increased expression of antibacterial genes in the muscle and skin clearly explains strong defensive mechanism activated in fish tissues in terms of both oxygen-dependent (iNOS) and independent (lysozyme) ways of microbe reduction, and bacterial lysis via production of antimicrobial molecules (ApoA-I and hepcidin) in the host. Simultaneous upregulation of MnSOD, GPx3 and catalase genes explains their involvement in patrolling the cells with regulated production of reactive oxygen species and keeping at a safe level to protect the host's own cells from oxidative damage.


Assuntos
Aeromonas hydrophila/patogenicidade , Anti-Infecciosos/metabolismo , Antioxidantes/metabolismo , Cyprinidae , Doenças dos Peixes/imunologia , Expressão Gênica , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Perfilação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Músculos/imunologia , Pele/imunologia
15.
J Microsc ; 261(3): 333-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26694198

RESUMO

An electrochemical method for loading electroactive materials over the TEM grid is reported. The protocol has been demonstrated using polyaniline as an example. The electroactive polymer was directly deposited over the Au TEM grid, used as working electrode in a 3 electrode electrochemical cell. The undisturbed as-deposited morphologies under the influence of various counter ions and ex situ electrochemical states have been studied and compared. Contrary to behaviour in bulk the individual polyaniline fibre was found thinner at anodic potentials. The movement of counter ions as a function of the electrochemical state of the polymer was studied using STEM-EDX elemental mapping.

16.
Phys Chem Chem Phys ; 17(40): 26790-6, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26394898

RESUMO

A specific and efficient hydrogen bonding interaction between cyanide and the HN-H [imidazole] in an aqueous medium has been utilized for the selective recognition of cyanide under physiological conditions. The possibility of utilizing such an interaction for developing any practical device for the specific detection of cyanide in an aqueous environment has not been explored to date. We now report a simple dip and read conductometric sensor for cyanide ions using a tailored electrode in aqueous media. The purpose built reagent, 2-phenyl-1H-anthra-[2,3-d]-immidazole-5,10 dione was immobilized in a polyaniline matrix to fabricate this conductometric device. The homogeneous immobilization of the receptor in polyaniline was confirmed by FT-IR mapping. The proposed transduction mechanism is charge neutralization on the polyaniline moiety, which ultimately inhibits the protonation resulting in a decrease in the conductance of polyaniline. The sensor response was measured in three ranges of cyanide concentration (10(-10) M to 10(-8) M; 10(-8) M to 10(-6) M and 10(-6) M to 10(-3) M). Whereas the device is found insensitive in the first range, it acts as a detector in the second range and as a proportional sensor in the third range. The minimum detection limit of this device was found to be 10 nmol L(-1) (2.6 ppt), which is significantly less than the WHO guideline values. The responses have been investigated under various conditions such as different pH and the electrochemical state of the polymer. The current device has been found to be better close to neutral pH and at a 400 mV vs. Ag/AgCl potential. The reproducibility and repeatability of the sensor was investigated and interference studies were performed.


Assuntos
Cianetos/análise , Imidazóis/química , Condutometria , Técnicas Eletroquímicas , Ligação de Hidrogênio , Estrutura Molecular
17.
ACS Appl Mater Interfaces ; 16(1): 190-200, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153905

RESUMO

Opioids are considered to be a global threat, and we are facing the worst opioid crisis of the decade. Synthetic opioids like fentanyl are highly potent and deadly toward human body, and hence its detection is an inevitable requirement globally. Naloxone is known for its antagonist property toward fentanyl, and we performed computational simulations to find their interactions and use this principle to build the first of a kind impedimetric sensor device, transduced by 3D-ZIF-8 with in situ encapsulated naloxone-gold nanoparticles. The probe is synthesized using a unique encapsulation strategy, thoroughly characterized by various physicochemical and microscopic tools. The sensor is highly selective toward fentanyl and can detect fentanyl up to 100 ppm in a synthetic sample. A prototype device is also built based on the synthetic calibration and applied to the spiked urine sample, and the performance is evaluated using statistical and machine learning tools.


Assuntos
Nanopartículas Metálicas , Naloxona , Humanos , Fentanila , Ouro/química , Nanopartículas Metálicas/química , Analgésicos Opioides
18.
Chemosphere ; 358: 142097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657687

RESUMO

No water body is resilient to afflicts of algal bloom, if goes unmanaged. With the increasing trend of intensification, eutrophication and climate change, Labeo rohita (rohu) is highly anticipated to suffer from the deleterious effects of bloom and eventually its toxins. A comprehensive study was conducted to understand the toxicopathological effects of microcystin-LR (MC-LR) in rohu following intraperitoneal injection of 96 h-LD50 dose i.e., 713 µg kg-1. Substantial changes in micro- and ultrastructural level were evident in histopathology and transmission electron microscope (TEM) study. The haematological, biochemical, cellular and humoral innate immune biomarkers were significantly altered (p < 0.05) in MC-LR treated fish. The mRNA transcript levels of IL-1ß, IL-10, IgM and IgZ in liver and kidney tissues were significantly up-regulated in 12 hpi and declined in 96 hpi MC-LR exposed fish. The relative mRNA expression of caspase 9 in the liver and kidney indicates mitochondrial-mediated apoptosis which was strongly supported by TEM study. In a nutshell, our study illustrates for the first time MC-LR induced toxicological implications in rohu displaying immunosuppression, enhanced oxidative stress, pathophysiology, modulation in mRNA transcription, genotoxicity, structural and ultrastructural alterations signifying it as a vulnerable species for MC-LR intoxication.


Assuntos
Cyprinidae , Toxinas Marinhas , Microcistinas , Animais , Microcistinas/toxicidade , Toxinas Marinhas/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos
19.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37986757

RESUMO

Axo-axonic cells (AACs), also called chandelier cells (ChCs) in the cerebral cortex, are the most distinctive type of GABAergic interneurons described in the neocortex, hippocampus, and basolateral amygdala (BLA). AACs selectively innervate glutamatergic projection neurons (PNs) at their axon initial segment (AIS), thus may exert decisive control over PN spiking and regulate PN functional ensembles. However, the brain-wide distribution, synaptic connectivity, and circuit function of AACs remains poorly understood, largely due to the lack of specific and reliable experimental tools. Here, we have established an intersectional genetic strategy that achieves specific and comprehensive targeting of AACs throughout the mouse brain based on their lineage (Nkx2.1) and molecular (Unc5b, Pthlh) markers. We discovered that AACs are deployed across essentially all the pallium-derived brain structures, including not only the dorsal pallium-derived neocortex and medial pallium-derived hippocampal formation, but also the lateral pallium-derived claustrum-insular complex, and the ventral pallium-derived extended amygdaloid complex and olfactory centers. AACs are also abundant in anterior olfactory nucleus, taenia tecta and lateral septum. AACs show characteristic variations in density across neocortical areas and layers and across subregions of the hippocampal formation. Neocortical AACs comprise multiple laminar subtypes with distinct dendritic and axonal arborization patterns. Retrograde monosynaptic tracing from AACs across neocortical, hippocampal and BLA regions reveal shared as well as distinct patterns of synaptic input. Specific and comprehensive targeting of AACs facilitates the study of their developmental genetic program and circuit function across brain structures, providing a ground truth platform for understanding the conservation and variation of a bona fide cell type across brain regions and species.

20.
J Inorg Biochem ; 257: 112598, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763101

RESUMO

In this work, we report on the synthesis of a novel zinc(II) coordination compound [ZnL2] (1), which was readily obtained from the reaction of Zn(OAc)·2H2O and N'-(pyridin-2-ylmethylene)nicotinohydrazide (HL) in methanol. Recrystallization of 1 from dimethylformamide under ambient conditions allowed to produce yellow block-like crystals of 1·H2O. Complex 1·H2O was characterized by FT-IR and 1H NMR spectroscopy, while its optical properties were studied by UV-vis and spectrofluorimetry in methanol. The crystal structure of the title complex was revealed by single crystal X-ray diffraction and further explored in detail by the Hirshfeld surface analysis. Theoretical investigations based on the DFT calculations have also been applied to show the electronic properties of complex 1. The antitumor activities of the parent ligand HL and complex 1 were studied using Dalton's lymphoma malignant cancer model. Both compounds were found to induce concentration-dependent cytotoxicity and apoptotic cell death, leading to a decrease in cell viability, body weight, and tumor volume in mice with the superior activity of complex 1 over HL. Mice treated with complex 1 demonstrated an increase in life span with a survival period of 23 days. Finally, using a molecular docking approach, we have probed complex 1 to inhibit the recombinant mouse tumor-necrosis factor alpha (mTNF).


Assuntos
Antineoplásicos , Complexos de Coordenação , Zinco , Zinco/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Humanos , Cristalografia por Raios X , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA