Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(33): e202400942, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605476

RESUMO

Selective synthesis of primary amines from nitriles is challenging in synthetic chemistry due to the possible en-route generation of various amines and imines. Herein, we report a practical and operationally simple MOtBu-mediated (M=Na, K) transfer hydrogenation of nitriles to the corresponding primary amines with a relatively unexplored sacrificial hydrogen source (dimethylamine borane). The strategy encompasses a broad substrate scope under transition metal-free conditions and does not require any solvent. The mechanistic investigation was performed with the aid of control experiments and spectroscopic studies. The GC analysis of the reaction mixture exhibited the evolution of the H2 gas. Additionally, detailed computational calculations were undertaken to shed light on the possible intermediates and transition states involved during the present protocol.

2.
Chemistry ; 30(5): e202303115, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37997460

RESUMO

Herein, an efficient method for asymmetric α-amination of 2-benzofuranones with N-heterocyclic carbene (NHC) catalysis is reported. The process is based on non-covalent interaction of NHC with substrate, facilitating the formation of a chiral ion-pair that encompasses enolate and azolium salt. The activated enolate adds to an electrophilic amine source with sufficient facial control to furnish an enantioenriched product having an amine substituted quaternary stereocenter. The process displays a broad substrate scope. A preparative scale synthesis has been achieved. Preliminary mechanistic investigations based on experimental and DFT studies suggest a reaction pathway that involves non-covalent substrate/NHC interactions and essentially implicate the role of π-π interaction in diastereomeric transition states for stereo-chemical discrimination.

3.
Angew Chem Int Ed Engl ; 63(19): e202402849, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38389271

RESUMO

Functionalized primary alkyl chlorides are precursors to a plethora of scaffolds but their access from chemical feedstocks remains challenging. Herein, we report a concise dual Ni/photoredox catalytic protocol for regioselective chlorocarbonylation of unactivated alkenes that enables rapid access to ß-keto primary chlorides. The catalytic process features an extensive substrate scope, scalability and functional group tolerance. The Ni/photocatalytic Cl⋅ generation and subsequent cross-coupling is implicated for the process based on the control experiments and DFT study. The synthetic utility of the protocol has been further corroborated through functionalization of complex substrates and modifications of the product.

4.
Chemistry ; 29(46): e202301435, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267469

RESUMO

Conversion of N2 to the energy vector N2 H4 under benign conditions is highly desirable. However, such N2 fixation processes are extremely rare. It has been recently reported that N2 to N2 H4 conversion can be achieved electrochemically by using a trinuclear [Ni3 (S2 C3 H6 )4 ]2- complex (named as [Ni3 S8 ]2- ). There are hardly any precedents of Nitrogen Reduction Reaction (NRR) by molecular catalysts having Ni and the highly unusual selectivity for N2 H4 over NH3 makes this electrochemical reduction unique. A systematic theoretical study employing calibrated Density Functional Theory to unearth the mechanisms of NRR (4e- /4H+ ) and Hydrogen Evolution Reaction (2e- /2H+ ) was conducted for the aforementioned trinuclear Ni complex. Our findings unravel a curious case of ligand lability working in tandem with metal centers in facilitating this unprecedented electrocatalytic activity. Furthermore, it is shown that the poor N-N bond activation property of Ni is responsible for this unusual selectivity. Additionally, the Hydrogen Evolution Reaction (HER) mechanistic pathways have also been delineated in this report. The mechanistic intricacies thus unearthed in this study may assist in developing more efficient electrocatalysts for N2 H4 production through NRR.

5.
Chemistry ; 29(7): e202202710, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326123

RESUMO

A MnI catalyst featuring redox-active tridentate phenalenyl (PLY) ligand has been used for catalytic N-formylation of secondary amides and lactams under 1 atm CO2 as a C1 source at room temperature for the first time. The protocol is applicable to a wide range of secondary amides including heterocycles, bio-active cinnamide derivatives and the diversification of therapeutic molecules. In-depth mechanistic investigations based on experimental outcomes and DFT calculations suggested an unconventional metal-ligand cooperation, where a ligand-centred radical plays a crucial role in initiating the reaction process.

6.
Inorg Chem ; 62(30): 11966-11975, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37459483

RESUMO

The simultaneous presence of Fe3+ and As3+ ions in groundwater (higher ppb or lower ppm level concentrations at circumneutral pH) as well as in acid mine drainages (AMDs)/industrial wastewater (up to few thousand ppm concentration at strongly acidic pH) are quite common. Therefore, understanding the chemical interactions prevalent between Fe3+ and As3+ ions in aqueous medium leading to nucleation of ionic clusters/solids, followed by aggregation and growth, is of great environmental significance. In the present work, we attempt to probe the nucleation process of Fe3+-As3+ clusters in solutions of various concentrations and pHs (from AMD to groundwater-like) using a combination of experimental and theoretical techniques. Interestingly, our study reveals nucleation of primary FeAs clusters in nearly all of them independent of concentration or pH. Theoretical studies employed density functional theory (DFT) to predict the primary clusters as stable Fe4As4 units. The surprising resemblance of these clusters with known Fe3+-As3+ minerals at the local level was observed experimentally, which provides an important clue about solid-phase growth from a range of Fe3+-As3+ solutions. Our experimental findings are further supported by a stepwise reaction mechanism established from detailed DFT studies.

7.
Phys Chem Chem Phys ; 25(38): 26060-26064, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37728064

RESUMO

Understanding chemical bonding in second-row diatomics has been central to elucidating the basics of bonding itself. Bond strength and the number of bonds are the two factors that decide the reactivity of molecules. While bond strengths have been theoretically computed accurately and experimentally determined, the number of bonds is a more contentious issue, especially for complicated multi-reference systems like C2. We have developed an experimentally verifiable approach to determine bond numbers from excited spin state potential energy surfaces. On applying this to a series of second-row heterodiatomics, we obtain the surprising phenomenon of an inverted charge transfer ionic state after all the ground state bonds are broken via higher spin states. These ionic states are ubiquitous in all heterodiatomics and unexpected in non-metallic systems.

8.
Angew Chem Int Ed Engl ; 61(13): e202116868, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044718

RESUMO

C≡N bond scission can be a potential avenue for the functionalization of chemical bonds. We have conducted a computational study, using density functional theory (DFT) and ab initio multireference CASSCF methods, to unravel the intricate mechanistic pathways traversed in the copper-promoted, dioxygen-assisted reaction for the formation of aryl isocyanate species from aryl aldehyde. This aryl isocyanate species acts as an active species for C≡N bond cleavage of coordinated cyanide anion enabling nitrogen transfer to various aldehydes. Electronic structure analysis revealed that under all the reaction conditions radical-based pathways are operative, which is in agreement with the experimental findings. The major driving force is a CuII/I redox cycle initiated by single-electron transfer from the carbon center of the nitrile moiety. Our study reveals that the copper salts act as the "electron pool" in this unique nitrogen transfer reaction forming an aryl isocyanate species from aryl aldehydes.

9.
Chemistry ; 27(44): 11458-11467, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33978984

RESUMO

This article reveals 4-dimethylaminopyridine (DMAP) regulated pathway selectivity in the supramolecular polymerization of a naphthalene-diimide derivative (NDI-1), appended with a carboxylic acid group. In decane, NDI-1 produces ill-defined aggregate (Agg-1) due to different H-bonding motifs of the -COOH group. With one mole equivalent DMAP, the NDI-1/DMAP complex introduces new nucleation condition and exhibits a cooperative supramolecular polymerization producing J-aggregated fibrillar nanostructure (Agg-2). With 10 % DMAP and fast cooling (10 K/min), similar nucleation and open chain H-bonding with the free monomer in an anti-parallel arrangement produces identical J-aggregate (Agg-2a). With 2.5 % DMAP and slow cooling (1 K/min), a distinct nucleation and supramolecular polymerization pathway emerge leading to the thermodynamically controlled Agg-3 with face-to-face stacking and 2D-morphology. Slow cooling with 5-10 % DMAP produces a mixture of Agg-2a and Agg-3. Computational modelling studies provide valuable insights into the internal order and the pathway complexity.

10.
Phys Chem Chem Phys ; 23(30): 16005-16012, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34235525

RESUMO

Cyclobutadiene (CBD) is the paradigmatic antiaromatic molecule but is known to form highly stable aromatic complexes, e.g. CBD-Fe(CO)3. This intriguing reversal of aromaticity from antiaromatic to aromatic terrain during the complexation process cannot be appropriately handled with single-reference-based theoretical techniques. We explore this aromaticity reversal, for the first time, by a detailed aromaticity analysis using magnetically induced current densities (MICD) and nucleus independent chemical shifts (NICS) using genuine ab initio multi-reference wavefunction-based theory. We trace the dramatic change of aromaticity for a prototypical cyclobutadiene complex, CBD-CH+ (CH+Fe(CO)3), considering a 3D potential energy surface for two independent parameters, namely the approach of CH+ and the automerization cross-section of cyclobutadiene. The 3D potential energy surfaces indicate the presence of a conical intersection/avoided crossing between the ground and the first excited state. The plot of aromaticity indices and the corresponding numerical values show that the change of aromaticity indices is drastic around the conical intersection/avoided crossing and automerization of cyclobutadiene plays a crucial role in the formation of cyclobutadiene complexes. Computations on analogous CBD-Be and CBD-CO systems (Be/COFe(CO)3) emphasize the generality of the conclusions drawn from the CBD-CH+ system.

11.
Inorg Chem ; 59(2): 1046-1056, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31909996

RESUMO

Metal-free catalysis by sterically encumbered Lewis Acid-Base pairs, popularly known as frustrated Lewis pairs (FLPs), is gaining importance by the day due to its promise of providing a greener alternative to transition-metal-based catalysis. One of the stumbling blocks in achieving catalytic dehydrogenation of amine-boranes is catalyst deactivation by the reaction product. Herein, we have theoretically investigated the routes of a dimethylxanthene-derived B,P-FLP-catalyzed dehydrogenation of dimethylamine-borane (DMAB), a rare instance which avoids catalyst inhibition by the reaction product. Our computational findings reveal that the dehydrogenation proceeds via formation of the ion pair [FLP-H]- and [HMe2N-BH2-H-BH2-NMe2H]+. This step is followed by indirect B-H activation assisted by a second DMAB molecule and further H2 release via deprotonation by the PPh2 center. It is revealed that the binding of NMe2BH2 to the FLP is unfavorable which ensures smooth propagation of the catalytic cycle. Catalytic dehydrogenation by the same mechanistic pathway is somewhat inhibited in the case of ammonia-borane by the same FLP due to the latent stabilization provided by strong hydrogen bonding interaction to FLP-NH2BH2 adduct which renders partial deactivation of the catalyst.

12.
J Phys Chem A ; 124(20): 3976-3983, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32338513

RESUMO

Photoremovable protecting groups (PPGs) provide spatial and temporal control over the release of various chemicals. Using surface hopping studies with multireference electronic structure methods we have unravelled the nuclear and the electronic events at play. Furthermore, the electronic changes along the reaction path were probed using excited state aromaticity quantifiers and orbital analysis. We find that upon irradiation with light of appropriate wavelength on the substituted coumarin system a π-π* electronic excitation occurs which is followed by an electron loss from the aromatic ring on gaining proper alignment between the π* and the C-LG (LG = leaving group) σ*. This alignment is brought about by a critical dihedral angle change in the molecule, which subsequently triggers C-LG bond cleavage. The sequence of events is indicative of an intramolecular electron catalyzed process which is established through investigations of changes in aromaticity of the phenyl ring which acts as an electron reservoir.

13.
Chemistry ; 25(72): 16606-16616, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31625633

RESUMO

The aerial oxidation of PdII to PdIV has emerged as an integral component of sustainable catalytic C-H functionalization processes. However, a proper understanding of the factors that control the viability of this oxidative process remains elusive. An investigation of the intricate mechanism of the transmetalation reaction of the aerial oxidative transformation of [(Me3 tacn)PdII Me2 ] (Me3 tacn=N,N',N''-trimethyl-1,4,7-triazacyclononane) to [(Me3 tacn)PdIV Me3 ]+ has been conducted by using DFT, along with multireference methods, such as second-order n-electron valence-state perturbation theory (NEVPT2) with complete active space self-consistent field theory (CASSCF). The present endeavor predicts that the thermodynamics and kinetics of the oxygen activation step are primarily dictated by the polarity of the solvents, which determine the amount of charge transfer to the oxygen molecule from the PdII center. Additionally, it is observed that the presence of a protic solvent has a significant effect on the spin-orbit coupling term at the minimum energy crossing point of the triplet and singlet surfaces. Moreover, it is shown that the intermetal ligand-transfer phenomenon is an important instance of an oxygen-assisted SN 2 reaction.

14.
Chemistry ; 24(13): 3330-3339, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315872

RESUMO

Though dinitrosyl-iron complexes (DNICs) are largely believed to act as NO carriers, several experiments on model DNICs have suggested that they can also act as nitrating agents in presence of dioxygen. Oxygen activation by DNICs has been implicated as a possible route for protein tyrosine nitration (PTN), which leads to neurodegenerative disorders. Herein using static and dynamic theoretical techniques we unravel a previously unknown dual state mechanistic paradigm for dioxygen activation of a biomimetic nitrating DNIC complex leading to phenolic nitration. Our computations reveal that the model DNIC, the ground electronic state of which is singlet, has a low-lying triplet state and an inherent singlet-triplet spin-crossover of DNICs can be triggered by fluxional changes in the bite angle of the two NO ligands. The presence of a low-lying triplet state in the DNIC affords an avenue for O2 activation other than a direct O2 activation by O2 -induced spin-crossover of the singlet ground state. These two low-lying channels facilitate the formation of a peroxynitrite species. Nitration of phenolic substrates is facilitated by the release of NO2 . The corresponding minimum energy crossing points (MECP) have been located. Along the reaction path, the changes in the electronic structure scenarios have been studied and interpreted. Our report also sheds light on the plausible mechanistic pathway of PTN by reactive species formed once O2 activation by DNICs have been achieved.

15.
Chemistry ; 24(17): 4350-4360, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29323438

RESUMO

Oxidation of nonmetallic singlet molecules by oxygen has its own share of intricacies. Herein, by means of DFT and ab initio techniques, mechanistic details of the aerial oxidation of an N-heterocyclic carbene (NHC) stabilized diphosphorus complex are revealed. This particular oxidation process is known to produce an unexpected P-P bond containing diphosphorus tetroxide complex, instead of the more thermodynamically stable oxo-bridged (P-O-P) compound. These findings suggest that the P-P bond containing less stabilized species is a kinetically controlled product (KCP) and obtained due to the presence of lower lying transition states (TSs) in the pathway leading to its formation, relative to the higher lying corresponding minimum-energy crossing points (MECPs) present in the pathway involved in the formation of the oxo-bridged species, which is the thermodynamically controlled product (TCP). Thus, an intriguing variant of the well-known KCP/TCP phenomenon is presented here, in which the KCP is formed not by merely traditionally known lower barrier heights of TSs involved in the formation of KCP, but by faster transmission of a system through a low barrier TS relative to a higher lying MECP. Additionally, the faster kinetics of an irreversible unimolecular O-O dissociation step, which avoids the formation of the TCP is a contributing factor in dictating the fate of the reaction. The insights provided herein may help to understand the oxidation of other P-P-containing species, such as black phosphorene.

16.
J Phys Chem A ; 121(27): 5204-5216, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28632392

RESUMO

We employ quantum chemical calculations to study the hydrogenation of carbon dioxide by amine boranes, NMe3BH3 (Me3AB) and NH3BH3 (AB) weakly bonded to a bulkier Lewis acid, Al(C6F5)3 (LA). Additionally, computations have also been conducted to elucidate the mechanism of hydrogenation of carbon dioxide by Me3AB while captured between one Lewis base (P(o-tol3), LB) and two Lewis acids, Al(C6F5)3. In agreement with the experiments, our computational study predicts that hydride transfer to conjugated HCO2-, generated in the reaction of Me3AB-LA with CO2, is not feasible. This is in contrast to the potential hydrogenation of bound HCO2H, developed in the reduction of CO2 with AB-LA, to further reduced species like H2C(OH)2. However, the FLP-trapped CO2 effortlessly undergoes three hydride (H-) transfers from Me3AB to produce a CH3O- derivative. DFT calculations reveal that the preference for a H- abstraction by an intrinsically anionic formate moiety is specifically dependent on the electrophilicity of the 2 e- reduced carbon center, which in particular is controlled by the electron-withdrawing capability of the associated substituents on the oxygen. These theoretical predictions are justified by frontier molecular orbitals and molecular electrostatic potential plots. The global electrophicility index, which is a balance of electron affinity and hardness, reveals that the electrophilicity of the formate species undergoing hydrogenation is twice the electrophilicity of the ones where hydrogenation is not feasible. The computed activation energies at M06-2X/6-31++G(d,p) closely predict the observed reactivity. In addition, the possibility of a dissociative channel of the frustrated Lewis pair trapped CO2 system has been ruled out on the basis of predominantly high endergonicity. Knowledge of the underlying principle of these reactions would be helpful in recruiting appropriate Lewis acids/amine boranes for effective reduction of CO2 and its hydrogenated forms in a catalytic fashion.

17.
Chemistry ; 22(4): 1216-22, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26552004

RESUMO

Oxidation by dioxygen has a rich repertoire of mechanistic intricacies. Herein, we report a hitherto unknown paradigm of dioxygen activation reaction which propagates through a four center two electron (4c-2e) bound species. Using static DFT and ab initio quantum chemical techniques we have unraveled the oxidation pathway for hydrazine and its methylated analogues by dioxygen which involves formation of this unconventional 4c-2e bonded species en route to the oxidation products. Inconvertible evidence in favor of such an unprecedented dioxygen activation route is provided by capturing the events of formation of the 4c-2e species in aqueous phase for hydrazine and its congeners and the experimentally observed products from the respective 4c-2e species, like H2O2 and N2H2 , diazene in the case of hydrazine using Car-Parrinello molecular dynamics simulations.

18.
Chemistry ; 22(6): 1908-1913, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26692300

RESUMO

An adaptable and efficient molecular recognition pair has been established by taking advantage of the complementary nature of donor-acceptor interactions together with the strength of hydrogen bonds. Such distinct molecular recognition propagates in orthogonal directions to effect extended alternating co-assembly of two different appended molecular entities. The dimensions of the assembled structures can be tuned by stoichiometric imbalance between the donor and acceptor building blocks. The morphology of the self-assembled material can be correlated with the ratio of the two building blocks.

19.
Phys Chem Chem Phys ; 18(36): 25308-25314, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711462

RESUMO

The breaking of bonds by catalytic electrons has gained prominence very recently but has been limited to cases where electrons from external sources have been used. Here, we show that upon photoexcitation, an electron of intramolecular origin is transferred from one part of a molecule to another followed by bond cleavage and then returns to its original moiety on completion of its catalytic function. By a proper assessment of the dramatic changes in aromaticity in excited-state intermediates along the photoreaction coordinate captured by the magnetically induced current density (MICD) technique, we show that in 5-phenyltetrazole, an excited electron, which migrates from the phenyl ring to the tetrazole ring, induces bond cleavage catalytically. Using the MICD technique, we establish for the first time a link between the phenomenon of excited-state electron/charge transfer among aromatic rings and the intricate interplay of aromatic, antiaromatic and non-aromatic states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA