Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 31(4): 581-601, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35022955

RESUMO

Eutrophication of water bodies and deterioration of water quality are emerging environmental crises. The root causes and consequences of eutrophication are multidirectional. Thus, they provide a huge scope of risk-analysis and risk-assessment in the domain of remediation studies. However, recent restoration studies reveal a global trend of utilizing traditional restoration methods combined with advanced pioneer innovative techniques developed in the field of science and technology. This review introduces a novel approach to consider ecohydrological assessment of eutrophication by classical biomanipulation practices emphasising on their evolution into innovative 'eco-bioengineering' methods. The main objective of this study is to critically analyse and recognize the research gaps in classical biomanipulation and appreciate the reproducibility and efficacy of eco-bioengineering methods at micro- and macrolevel aquatic ecosystems. Comprehensive literature review was conducted on offline and online platforms. Our survey revealed (a) continuation of a historical trend in classical biomanipulation practices (61.64%) and (b) an ascending drift in eco-bioengineering research (38.36%) in the last decade (2010-2021). At a global scale, recent biomanipulation research has a skewed distribution in Europe (41.10%), East Asia (32.88%), North America (10.96%), South Africa (4.11%), South America (2.74%), Middle East (1.37%), Oceania (1.37%), and non-specific regions (5.48%). Finally, this review analysis revealed the comprehensiveness of eco-bioengineering methods and their strong ecological resilience to recurrence of eutrophication and fluctuating environmental flows in the future. Therefore, our review reinforces the supremacy of eco-bioengineering methods as cost-effective green technologies providing sustainable solutions to restore the eutrophic waters at a global scale.


Assuntos
Ecossistema , Eutrofização , Bioengenharia , Reprodutibilidade dos Testes , Qualidade da Água
2.
Sci Total Environ ; 762: 143171, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33143915

RESUMO

Eutrophication of freshwater bodies causes loss of earth's biological resources and aggravates climate change, thus assuming major environmental concern. Both endogenous and exogenous nutrient enrichment are responsible for eutrophication. Numerous monitoring and management studies conducted worldwide have resulted high-level technological innovations. These studies cumulatively uphold the significance of ecohydrological and ecological engineering approaches. However, holistic and insightful reviews with feasible recommendations of such huge academic outputs are rather scanty. Therefore, our main objective was to introduce a new perspective of eutrophication as an ecohydrological component; to discover all possibilities of monitoring and restoration of eutrophic water bodies. Furthermore, the present study critically analyzes various methods of treatment of eutrophication (physical, biological, chemical, and eco-engineering). Comprehensive volume of literature has been surveyed using search engines like Scopus, Google Scholar, PubMed, ScienceDirect etc. Meaningful keywords were used to obtain reliable information on methods of ecohydrological assessment in relation to eutrophication of freshwater bodies. According to our survey, ecohydrological research is diversified into conceptual knowledge (37.2%), assessment (32.6%), climate change (9.3%), algae/cyanotoxins (7%), engineering and restoration (7%), modelling (4.6%) and biodiversity (2.3%), in the instant decade (2010-2020). We have identified a clear trend of transition of restoration methods from traditional towards modern techniques over time. Moreover, this review recognizes a pool of biophysicochemical and ecological engineering techniques, which are very effective in regard to time, cost, and labor and have immense scopes of modification for improved results. This work focuses on the importance of ecohydrology and eco-engineering tools for restoration of eutrophic water bodies for the first time. We have highlighted how these approaches have emerged as one of the best suitable and sustainable water resource conservation routes in the present era.


Assuntos
Eutrofização , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA