Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Cell Mol Life Sci ; 80(5): 122, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052684

RESUMO

OBJECTIVE: Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4+/-) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet. METHODS: Slc2a4+/- mice were used, that performed 5 days of endurance or strength exercise training. Further analysis included physiological tests (GTT and ITT), skeletal muscle glucose uptake, skeletal muscle RNA-sequencing, mitochondrial function, and experiments with C2C12 cell line. RESULTS: When Slc2a4+/- mice were submitted to the endurance or strength training protocol, improvements were observed in the skeletal muscle glucose uptake and glucose metabolism, associated with broad transcriptomic modulation, that was, in part, related to mitochondrial adaptations. The endurance training, but not the strength protocol, was effective in improving skeletal muscle mitochondrial activity and unfolded protein response markers (UPRmt). Moreover, experiments with C2C12 cells indicated that insulin or glucose levels could contribute to these mitochondrial adaptations in skeletal muscle. CONCLUSIONS: Both short-term exercise protocols were efficient in whole-body glucose homeostasis and insulin resistance. While endurance exercise plays an important role in transcriptome and mitochondrial activity, strength exercise mostly affects post-translational mechanisms and protein synthesis in skeletal muscle. Thus, the performance of both types of physical exercise proved to be a very effective way to mitigate the impacts of hyperglycemia and hyperinsulinemia in the Slc2a4+/- mouse model.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Camundongos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo
2.
Diabetologia ; 66(3): 567-578, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36456864

RESUMO

AIMS/HYPOTHESIS: Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance. Here, we hypothesised that regular aerobic exercise would preserve muscle insulin sensitivity by preventing increases in plasma membrane sn-1,2-DAGs and activation of PKCε and PKCθ despite promoting increases in muscle triacylglycerol content. METHODS: C57BL/6J mice were allocated to three groups (regular chow feeding [RC]; high-fat diet feeding [HFD]; RC feeding and running wheel exercise [RC-EXE]). We used a novel LC-MS/MS/cellular fractionation method to assess DAG stereoisomers in five subcellular compartments (plasma membrane [PM], endoplasmic reticulum, mitochondria, lipid droplets and cytosol) in the skeletal muscle. RESULTS: We found that the HFD group had a greater content of sn-DAGs and ceramides in multiple subcellular compartments compared with the RC mice, which was associated with an increase in PKCε and PKCθ translocation. However, the RC-EXE mice showed, of particular note, a reduction in PM sn-1,2-DAG and ceramide content when compared with HFD mice. Consistent with the PM sn-1,2-DAG-novel PKC hypothesis, we observed an increase in phosphorylation of threonine1150 on the insulin receptor kinase (IRKT1150), and reductions in insulin-stimulated IRKY1162 phosphorylation and IRS-1-associated phosphoinositide 3-kinase activity in HFD compared with RC and RC-EXE mice, which are sites of PKCε and PKCθ action, respectively. CONCLUSIONS/INTERPRETATION: These results demonstrate that lower PKCθ/PKCε activity and sn-1,2-DAG content, especially in the PM compartment, can explain the preserved muscle insulin sensitivity in RC-EXE mice.


Assuntos
Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/fisiologia , Proteína Quinase C-theta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Cromatografia Líquida , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Insulina/metabolismo , Músculo Esquelético/metabolismo , Triglicerídeos/metabolismo , Ceramidas/metabolismo
3.
Am J Physiol Endocrinol Metab ; 325(5): E513-E528, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755454

RESUMO

Nonalcoholic fatty liver disease (NAFLD), a condition characterized by the accumulation of fat in the liver, is estimated to be the most common liver disease worldwide. Obesity is a major risk factor and contributor, and, accordingly, weight loss can improve NAFLD. Previous studies in preclinical models of diet-induced obesity and fatty liver disease have shown the independent benefits of resistance exercise training (RT) and time-restricted feeding (TRF) in preventing weight gain and hepatic build-up of fat. Here, we tested the combined effect of TRF and RT on obesity and NAFLD in mice fed a high-fat diet. Our results showed that both TRF-8-h food access in the active phase-and RT-consisting of three weekly sessions of ladder climbing-attenuated body weight gain, improved glycemic homeostasis, and decreased the accumulation of lipids in the liver. TRF combined with RT improved the respiratory exchange rate, energy expenditure, and mitochondrial respiration in the liver. Furthermore, gene expression analysis in the liver revealed lower mRNA expression of lipogenesis and inflammation genes along with increased mRNA of fatty acid oxidation genes in the TRF + RT group. Importantly, combined TRF + RT was shown to be more efficient in preventing obesity and metabolic disorders. In conclusion, TRF and RT exert complementary actions compared with isolated interventions, with significant effects on metabolic disorders and NAFLD in mice.NEW & NOTEWORTHY Whether time-restricted feeding (TRF) combined with resistance exercise training (RT) may be more efficient compared with these interventions alone is still unclear. We show that when combined with RT, TRF provided additional benefits, being more effective in increasing energy expenditure, preventing weight gain, and regulating glycemic homeostasis than each intervention alone. Thus, our results demonstrate that TRF and RT have complementary actions on some synergistic pathways that prevented obesity and hepatic liver accumulation.


Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Treinamento Resistido , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Fígado/metabolismo , Aumento de Peso , Doenças Metabólicas/metabolismo , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL
4.
J Physiol ; 600(4): 797-813, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450053

RESUMO

KEY POINTS: Time-restricted feeding (TRF, in which energy intake is restricted to 8 h/day during the dark phase) alone or combined with aerobic exercise (AE) training can prevent weight gain and metabolic disorders in Swiss mice fed a high-fat diet. The benefits of TRF combined with AE are associated with improved hepatic metabolism and decreased hepatic lipid accumulation. TRF combined with AE training increased fatty acid oxidation and decreased expression of lipogenic and gluconeogenic genes in the liver of young male Swiss mice. TRF combined with AE training attenuated the detrimental effects of high-fat diet feeding on the insulin signalling pathway in the liver. ABSTRACT: Time-restricted feeding (TRF) or physical exercise have been shown to be efficient in the prevention and treatment of metabolic disorders; however, the additive effects of TRF combined with aerobic exercise (AE) training on liver metabolism have not been widely explored. In this study TRF (8 h in the active phase) and TRF combined with AE (TRF+Exe) were compared in male Swiss mice fed a high-fat diet, with evaluation of the effects on insulin sensitivity and expression of hepatic genes involved in fatty acid oxidation, lipogenesis and gluconeogenesis. As in previous reports, we show that TRF alone (eating only between zeitgeber time 16 and 0) was sufficient to reduce weight and adiposity gain, increase fatty acid oxidation and decrease lipogenesis genes in the liver. In addition, we show that mice of the TRF+Exe group showed additional adaptations such as increased oxygen consumption ( V̇O2${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ ), carbon dioxide production ( V̇CO2${\dot V_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}}$ ) and production of ketone bodies (ß-hydroxybutyrate). Also, TRF+Exe attenuated the negative effects of high-fat diet feeding on the insulin signalling pathway (insulin receptor, insulin receptor substrate, Akt), and led to increased fatty acid oxidation (Ppara, Cpt1a) and decreased gluconeogenic (Fbp1, Pck1, Pgc1a) and lipogenic (Srebp1c, Cd36) gene expression in the liver. These molecular results were accompanied by increased glucose metabolism, lower serum triglycerides and reduced hepatic lipid content in the TRF+Exe group. The data presented in this study show that TRF alone has benefits but TRF+Exe has additive benefits and can mitigate the harmful effects of consuming a high-fat diet on body adiposity, liver metabolism and glycaemic homeostasis in young male Swiss mice.


Assuntos
Resistência à Insulina , Doenças Metabólicas , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Aumento de Peso
5.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382659

RESUMO

Omega 3 (ω3) fatty acids have been described since the 1980s as promising anti-inflammatory substances. Prostaglandin and leukotriene modulation were exhaustively explored as the main reason for ω3 beneficial outcomes. However, during the early 2000s, after the human genome decoding advent, the nutrigenomic approaches exhibited an impressive plethora of ω3 targets, now under the molecular point of view. Different G protein-coupled receptors (GPCRs) recognizing ω3 and its derivatives appear to be responsible for blocking inflammation and insulin-sensitizing effects. A new class of ω3-derived substances, such as maresins, resolvins, and protectins, increases ω3 actions. Inflammasome disruption, the presence of GPR120 on immune cell surfaces, and intracellular crosstalk signaling mediated by PPARγ compose the last discoveries regarding the multipoint anti-inflammatory targets for this nutrient. This review shows a detailed mechanistic proposal to understand ω3 fatty acid action over the inflammatory environment in the background of several chronic diseases.

6.
Cell Biochem Funct ; 40(3): 321-332, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35298040

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and involvement of the synovial membrane, causing joint damage and deformities. No effective drug treatment is available, and physical exercise has been utilized to alleviate the inflammatory processes. This study aimed to investigate the effects of different exercise training protocols on Zymosan-induced RA inflammatory markers in the right knee of Wistar rats. The rodents were subjected to aerobic, resisted, and combined physical training protocols with variations in the total training volume (50% or 100% of resistance and aerobic training volume) for 8 weeks. All physical training protocols reduced cachexia and systemic inflammatory processes. The histological results showed an increase in the inflammatory influx to the synovial tissue of the right knee in all physical training protocols. The rats that underwent combined physical training with reduced volume had a lower inflammatory influx compared to the other experimental groups. A reduction in the mRNA expression of inflammatory genes and an increase in anti-inflammatory gene expression were also observed. The physical training protocol associated with volume reduction attenuated systemic and synovial inflammation of the right knee, reducing the impact of Zymosan-induced RA in rats.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Artrite Experimental/patologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Artrite Reumatoide/terapia , Inflamação/induzido quimicamente , Ratos , Ratos Wistar , Zimosan/efeitos adversos
7.
Clin Exp Pharmacol Physiol ; 49(10): 1072-1081, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690890

RESUMO

Obesity is associated with low-grade inflammation and disturbances in hepatic metabolism. This study aimed to investigate the effects of resistance exercise on inflammatory signalling related to IκB kinase (IKK) ɛ protein (IKKɛ) and on hepatic fat accumulation in obese mice. Male Swiss mice were distributed into three groups: control (CTL) fed with standard chow; obese (OB) mice induced by a high-fat diet (HFD); obese exercised (OB + RE) mice fed with HFD and submitted to a resistance exercise training. The resistance exercise training protocol consisted of 20 sets/3 ladder climbs for 8 weeks, three times/week on alternate days. The training overload was equivalent to 70% of the maximum load supported by the rodent. Assays were performed to evaluate weight gain, hepatic fat content, fasting glucose, insulin sensitivity, IKKɛ phosphorylation and proteins related to insulin signalling and lipogenesis in the liver. Mice that received the high-fat diet showed greater adiposity, impaired insulin sensitivity, increased fasting glucose and increased hepatic fat accumulation. These results were accompanied by an increase in IKKɛ phosphorylation and lipogenesis-related proteins such as cluster of differentiation 36 (CD36) and fatty acid synthase (FAS) in the liver of obese mice. In contrast, exercised mice showed lower body weight and adiposity evolution throughout the experiment. In addition, resistance exercise suppressed the effects of the high-fat diet by reducing IKKɛ phosphorylation and hepatic fat content. In conclusion, resistance exercise training improves hepatic fat metabolism and glycaemic homeostasis, which are, at least in part, linked to the anti-inflammatory effect of reduced IKKɛ phosphorylation in the liver of obese mice.


Assuntos
Adiposidade , Quinase I-kappa B , Fígado , Obesidade , Treinamento Resistido , Animais , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Fosforilação
8.
J Sci Food Agric ; 102(15): 7293-7300, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35758165

RESUMO

BACKGROUND: Prebiotics and probiotics may be effective dietary components that can alter the gut microbiota of the host and, consequently, overcome imbalances associated with obesity. This work aimed to evaluate the synergistic and isolated effects and mechanisms by which probiotic yogurt containing Bifidobacterium animalis and/or Lactobacillus acidophilus and yacon flour alter metabolic parameters and inflammatory and insulin signaling proteins in diet-induced obese mice. Swiss mice were fed a high-fat diet (n = 48) or a standard diet (control; n = 6) for 56 days. The 42 mice that gained the most weight were selected and divided into seven groups that received different combinations of probiotic yogurt and yacon flour. After 30 days, biochemical parameters (blood glucose, serum total cholesterol, and triacylglycerols), crude fat excretion in feces, and periepididymal fat were assessed and an immunoblotting analysis of insulin signaling proteins and interleukin-1ß was conducted. RESULTS: The combination of yacon flour and a yogurt with two strains of probiotics exerted positive effects on the parameters evaluated, such as decreased body weight (-6.5%; P < 0.05), fasting glucose (-23.1%; P < 0.05), and triacylglycerol levels (-21.4%; P < 0.05) and decreased periepididymal fat accumulation (-44.2%; P < 0.05). There was a decrease in inflammatory markers (P < 0.001) and an improvement in insulin signaling (P < 0.001). CONCLUSIONS: The combination of a prebiotic with two strains of probiotics in a food matrix may exert a protective effect against obesity-associated inflammation, improving insulin resistance, even in the short term. © 2022 Society of Chemical Industry.


Assuntos
Dieta Hiperlipídica , Probióticos , Animais , Camundongos , Iogurte , Camundongos Obesos , Insulina , Farinha , Prebióticos , Probióticos/farmacologia , Obesidade/metabolismo
9.
J Anat ; 238(3): 743-750, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33094520

RESUMO

The anatomy of the hypothalamus includes many nuclei and a complex network of neurocircuits. In this context, some hypothalamic nuclei reside closer to the blood-brain barrier, allowing communication with the peripheral organs through some molecules, such as leptin. Leptin is considered the main adipokine for energy homeostasis control. Furthermore, leptin signalling in the hypothalamus can communicate with insulin signalling through the activation of phosphoinositide 3-kinase (PI3k). Previous data suggest that isoforms of PI3k are necessary to mediate insulin action in the hypothalamus. However, obese animals show impairment in the central signalling of these hormones. Thus, in the current study, we evaluated the role of acute exercise in the leptin and insulin pathways in the hypothalamus, as well as in food intake control in obese mice. Although acute physical exercise was not able to modulate leptin signalling, this protocol suppressed the increase in the suppressor of cytokine signalling 3 (SOCS3) protein levels. In addition, acute exercise increased the content of PI3k-p110α protein in the hypothalamus. The exercised animals showed a strong tendency to reduction in cumulative food intake. For the first time, our results indicate physical exercise can increase PI3k-p110α protein content in the hypothalamus of obese mice and regulate food intake.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidade/terapia , Condicionamento Físico Animal/fisiologia , Animais , Masculino , Camundongos , Obesidade/metabolismo
10.
Cytokine ; 137: 155306, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010727

RESUMO

PURPOSE: Interleukin-15 (IL-15) is a myokine that has been proposed to modulate skeletal muscle and adipose tissue mass, as well as insulin sensitivity. However, the evidence suggesting a role for IL-15 in improving whole-body insulin sensitivity and decreasing adiposity comes mainly from studies using supraphysiological levels of this cytokine. This study examined the effect of a short-term exercise training protocol on the protein content of IL-15, it's signaling pathway, and glucose tolerance in aged rats. METHODS: Fourteen Wistar rats were divided into Young Sedentary (Young, n = 4); Old Sedentary (Old, n = 5); Old Exercise (Old.Exe, n = 5) groups. The animals from the exercised group were submitted to a short-term physical exercise protocol for five days. At the end of physical training and after 16 h of the last exercise session, the animals were euthanized, and tissue collection was done. RESULTS: Physical exercise decreased epididymal and mesenteric fat mass and promoted positive effects on glucose tolerance and insulin sensitivity. Muscle IL-15 protein levels were not changed following the short-term physical exercise training with no alterations in the post-exercise IL-15-JAK/STAT signaling pathway. We found a tendency to increased HIF1α and a significant increase in its regulator, PHD2, in the skeletal muscle after exercise. CONCLUSION: The elderly rats submitted to short-term aerobic physical training did not present skeletal muscle alteration in the protein content of the IL-15 and IL-15-JAK/STAT signaling pathway. However, short-term aerobic physical training was able to modulate the expression of HIF1α and its regulator PHD2, suggesting an essential role of these proteins in improving post-exercise glucose tolerance and insulin sensitivity in elderly rats.


Assuntos
Envelhecimento , Glucose/metabolismo , Interleucina-15/metabolismo , Condicionamento Físico Animal/fisiologia , Transdução de Sinais/fisiologia , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Ratos Wistar , Fatores de Tempo
11.
Amino Acids ; 53(9): 1391-1403, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34255136

RESUMO

Interventions that can modulate subcutaneous white adipose tissue (scWAT) function, such as exercise training and nutritional components, like taurine, modulate the inflammatory process, therefore, may represent strategies for obesity treatment. We investigated the effects of taurine supplementation in conjunction with exercise on inflammatory and oxidative stress markers in plasma and scWAT of obese women. Sixteen obese women were randomized into two groups: Taurine supplementation group (Tau, n = 8) and Taurine supplementation + exercise group (Tau + Exe, n = 8). The intervention was composed of daily taurine supplementation (3 g) and exercise training for 8 weeks. Anthropometry, body fat composition, and markers of inflammatory and oxidative stress were determined in plasma and scWAT biopsy samples before and after the intervention. We found that, although taurine supplementation increased taurine plasma levels, no changes were observed for the anthropometric characteristics. However, Tau alone decreased interleukin-6 (IL-6), and in conjunction with exercise (Tau + Exe), increased anti-inflammatory interleukins (IL-15 and IL10), followed by reduced IL1ß gene expression in the scWAT of obese women. Tau and Tau + Exe groups presented reduced adipocyte size and increased connective tissue and multilocular droplets. In conclusion, taurine supplementation in conjunction with exercise modulated levels of inflammatory markers in plasma and scWAT, and improved scWAT plasticity in obese women, promoting protection against obesity-induced inflammation. TRN NCT04279600 retrospectively registered on August 18, 2019.


Assuntos
Tecido Adiposo Branco/fisiologia , Citocinas/sangue , Suplementos Nutricionais , Exercício Físico , Obesidade/terapia , Gordura Subcutânea/fisiologia , Taurina/administração & dosagem , Tecido Adiposo , Adulto , Biomarcadores/sangue , Composição Corporal , Feminino , Humanos , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/patologia , Adulto Jovem
12.
Exerc Immunol Rev ; 27: 7-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33965898

RESUMO

The hypothalamus plays a critical role in the control of food consumption and energy expenditure. Fatty diets can elicit an inflammatory response in specific hypothalamic cells, including astrocytes, tanycytes, and microglia, disrupting anorexigenic signals in region-specific hypothalamic neurons, contributing to overeating and body weight gain. In this study, we present an update regarding the knowledge of the effects of physical exercise on inflammatory signaling and circuits to control hunger in the hypothalamus in obesity conditions. To try to understand changes in the hypothalamus, we review the use of magnetic resonance/anorexigenic hormone analysis in humans, as well as in animal models to explore the physiological and molecular mechanism by which exercise modulates satiety signals, such as the central anti-inflammatory response, myokine delivery from skeletal muscle, and others. The accumulation of scientific evidence in recent years allows us to understand that exercise contributes to weight control, and it is managed by mechanisms that go far beyond "burning calories."


Assuntos
Exercício Físico , Hipotálamo , Saciação , Animais , Humanos , Inflamação , Obesidade
13.
Mol Biol Rep ; 48(5): 4637-4645, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34036481

RESUMO

Obesity is a chronic, non-transmissible and multifactorial disease commonly associated with systemic inflammation and damage to health. This disorder has been pointed out as leading to the development of a diversity of eye diseases and, consequently, damage to visual acuity. More specifically, cardiometabolic risk is associated with lacrimal gland dysfunctions, since it changes the inflammatory profile favoring the development and worsening of dry eye disease. In more severe and extreme cases, obesity, inflammation, and diabetes mellitus type 2 can trigger the total loss of vision. In this scenario, besides its numerous metabolic functions, clusterin, an apolipoprotein, has been described as protective to the ocular surface through the seal mechanism. Thus, the current review aimed to explain the role of clusterin in dry eye disease that can be triggered by obesity and diabetes.


Assuntos
Clusterina/genética , Diabetes Mellitus Tipo 2/genética , Síndromes do Olho Seco/genética , Obesidade/genética , Apolipoproteínas/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Síndromes do Olho Seco/etiologia , Síndromes do Olho Seco/patologia , Olho/metabolismo , Olho/patologia , Humanos , Inflamação/etiologia , Inflamação/genética , Inflamação/patologia , Obesidade/complicações , Obesidade/patologia
14.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203825

RESUMO

Obesity is closely related to insulin resistance and type 2 diabetes genesis. The liver is a key organ to glucose homeostasis since insulin resistance in this organ increases hepatic glucose production (HGP) and fasting hyperglycemia. The protein-tyrosine phosphatase 1B (PTP1B) may dephosphorylate the IR and IRS, contributing to insulin resistance in this organ. Aerobic exercise is a great strategy to increase insulin action in the liver by reducing the PTP1B content. In contrast, no study has shown the direct effects of strength training on the hepatic metabolism of PTP1B. Therefore, this study aims to investigate the effects of short-term strength exercise (STSE) on hepatic insulin sensitivity and PTP1B content in obese mice, regardless of body weight change. To achieve this goal, obese Swiss mice were submitted to a strength exercise protocol lasting 15 days. The results showed that STSE increased Akt phosphorylation in the liver and enhanced the control of HGP during the pyruvate tolerance test. Furthermore, sedentary obese animals increased PTP1B content and decreased IRS-1/2 tyrosine phosphorylation; however, STSE was able to reverse this scenario. Therefore, we conclude that STSE is an important strategy to improve the hepatic insulin sensitivity and HGP by reducing the PTP1B content in the liver of obese mice, regardless of changes in body weight.


Assuntos
Peso Corporal , Resistência à Insulina , Condicionamento Físico Animal , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Adiposidade , Animais , Regulação para Baixo , Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Camundongos Obesos , Treinamento Resistido , Transdução de Sinais
15.
Am J Physiol Endocrinol Metab ; 319(3): E529-E539, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32715748

RESUMO

Hyperinsulinemia plays a causal role in adipose tissue expansion. Mice with reduced insulin have increased energy expenditure, but the mechanisms remained unclear. Here we investigated the effects of genetically reducing insulin production on uncoupling and oxidative mitochondrial proteins in liver, skeletal muscle, white adipose tissue (WAT), and brown adipose tissue (BAT). Male Ins1+/+ or Ins1+/- littermates were fed either a low-fat diet (LFD) or a high-fat diet (HFD) for 4 wk, starting at 8 wk of age. Replicating our previous observations, HFD increased fasting hyperinsulinemia, and Ins1+/- mice had significantly lower circulating insulin compared with Ins1+/+ littermates. Fasting glucose and body weight were not different between genotypes. We did not observe robust significant differences in liver or skeletal muscle. In mesenteric WAT, Ins1+/- mice had reduced Ndufb8 and Sdhb, while Ucp1 was increased in the context of HFD. HFD alone had a dramatic inhibitory effect on Pparg abundance. In inguinal WAT, Ins1+/- mice exhibited significant increases in oxidative complex proteins, independent of diet, without affecting Ucp1, Pparg, or Prdm16:Pparg association. In BAT, lowered insulin increased Sdhb protein levels that had been reduced by HFD. Ucp1 protein, Prdm16:Pparg association, and Sirt3 abundance were all increased in the absence of diet-induced hyperinsulinemia. Our data show that reducing insulin upregulates oxidative proteins in inguinal WAT without affecting Ucp1, whereas in mesenteric WAT and BAT, reducing insulin upregulates Ucp1 in the context of HFD. Preventing hyperinsulinemia has early depot-specific effects on adipose tissue metabolism and helps explain the increased energy expenditure previously reported in Ins1+/- mice.


Assuntos
Tecido Adiposo/metabolismo , Insulina/genética , Insulina/metabolismo , Mitocôndrias/metabolismo , Proteína Desacopladora 1/biossíntese , Células 3T3-L1 , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/genética , Dieta Hiperlipídica , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Camundongos , Camundongos Knockout , Fosforilação Oxidativa , Consumo de Oxigênio , Regulação para Cima
16.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847099

RESUMO

Excess of adipose tissue increases the concentration of proinflammatory cytokines, triggering a subclinical inflammatory condition. This inflammatory profile contributes to retina damage, which can lead to retinal dysfunction and reduced vision. Regularly practicing both aerobic and strength exercises is well known for promoting anti-inflammatory effects on different organs in the peripheral and central regions. However, the effects of combined physical exercise (CPE; strength + aerobic) on the inflammatory process in the retina tissue are not yet known. This study aimed to investigate the effects of CPE on the inflammatory profile of the retina in obese mice. Swiss mice were distributed into control, sedentary obese, and trained obese groups. The trained obese group was subjected to short-term CPE, 1 h/day, for 7 days. The CPE was composed of aerobic and strength exercises in the same exercise session. The strength exercise protocol consisted of 10 climbing series, with 12 ± 1 dynamic climbing movements at 70% of the maximum voluntary carrying capacity (MVCC), and the aerobic exercise protocol consisted of 30 min of treadmill running, with an intensity of 75% of the exhaust velocity. Subsequently, the retina was excised and analyzed by Western blot. Obese animals presented impairment on glucose homeostasis and elevated levels of proinflammatory proteins in the serum and retina; however, CPE was effective in reversing these parameters, independently of changes in body adiposity. Therefore, for the first time, we have shown that short-term CPE can be an important strategy to treat an inflammatory profile in the retina.


Assuntos
Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/métodos , Retina/metabolismo , Animais , Glicemia/metabolismo , Terapia Combinada , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Inflamação/etiologia , Mediadores da Inflamação/sangue , Resistência à Insulina , Metaboloma , Camundongos , Camundongos Obesos , Obesidade/complicações , Obesidade/etiologia , Obesidade/patologia , Retina/patologia
17.
J Cell Biochem ; 120(4): 5551-5557, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30320909

RESUMO

The purpose of this study was to investigate the impact of a training season (approximately 7 months) on physiological and salivary immune-endocrine markers in master athletes. Nine male master athletes were evaluated at the beginning of the season (M1) and a week after the main official competition at the end of the sports season (M2). The controlled variables included Maximal oxygen consumption, anthropometric, physiological, and salivary immune-endocrine markers. Master athletes presented a reduced percentage of fat mass and increased lean body mass at the end of the season. VO2max values were similar at M1 and M2, while the maximal heart rate and lactate were lower at M2. No differences were observed in Immunoglobulin A and cortisol levels between moments, whereas testosterone levels and the testosterone/cortisol ratio were significantly lower at the end of the season. The results suggest that maintaining regular training throughout life has positive effects on body composition and improves physiological fitness. However, care should be taken to avoid fatigue as indicated by lower testosterone levels at the end of the season.


Assuntos
Atletas , Hidrocortisona , Consumo de Oxigênio/imunologia , Desempenho Físico Funcional , Saliva , Testosterona , Adulto , Feminino , Humanos , Hidrocortisona/imunologia , Hidrocortisona/metabolismo , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Masculino , Saliva/imunologia , Saliva/metabolismo , Testosterona/imunologia , Testosterona/metabolismo
18.
J Cell Biochem ; 120(1): 697-704, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30206970

RESUMO

The obesity is a result of energy imbalance and the increase in thermogenesis seems an interesting alternative for the treatment of this disease. The mechanism of energy expenditure through thermogenesis is tightly articulated in the hypothalamus by leptin. The hypothalamic extracellular signal-regulated kinase-1/2 (ERK1/2) is a key mediator of the thermoregulatory effect of leptin and mediates the sympathetic signal to the brown adipose tissue (BAT). In this context, physical exercise is one of the main interventions for the treatment of obesity. Thus, this study aimed to verify the effects of acute physical exercise on leptin-induced hypothalamic ERK1/2 phosphorylation and thermogenesis in obese mice. Here we showed that acute physical exercise reduced the fasting glucose of obese mice and increased leptin-induced hypothalamic p-ERK1/2 and uncoupling protein 1 (UCP1) content in BAT ( P < 0.05). These molecular changes are accompanied by an increased oxygen uptake (VO 2 ) and heat production in obese exercised mice ( P < 0.05). The increased energy expenditure in the obese exercised animals occurred independently of changes in spontaneous activity. Thus, this is the first study demonstrating that acute physical exercise can increase leptin-induced hypothalamic ERK1/2 phosphorylation and energy expenditure of obese mice.


Assuntos
Hipotálamo/metabolismo , Leptina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Obesidade/metabolismo , Condicionamento Físico Animal , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Injeções Intraperitoneais , Leptina/administração & dosagem , Camundongos , Camundongos Obesos , Consumo de Oxigênio/fisiologia , Fosforilação/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
19.
Eur J Neurosci ; 50(7): 3181-3190, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31206806

RESUMO

Adiponectin is an adipokine that acts in the control of energy homeostasis. The adaptor protein containing the pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1) is a key protein in the adiponectin signaling. The APPL1 mediates a positive effect on the insulin signaling through the interaction with the phosphoinositide 3-kinase (PI3K). Thus, the present study aimed to explore the effects of an acute physical exercise session on the hypothalamic adiponectin signaling. Firstly, using bioinformatics analysis, we found a negative correlation between hypothalamic APPL1 mRNA levels and food consumption in several strains of genetically diverse BXD mice. Also, the mice and the human database revealed a positive correlation between the levels of APPL1 mRNA and PI3K mRNA. At the molecular level, the exercised mice showed increased APPL1 and PI3K (p110) protein contents in the hypothalamus of Swiss mice. Furthermore, the exercise increases co-localization between APPL1 and PI3K p110 predominantly in neurons of the arcuate nucleus of hypothalamus (ARC). Finally, we found an acute exercise session reduced the food intake 5 hr after the end of fasting. In conclusion, our results indicate that physical exercise reduces the food intake and increases some proteins related to adiponectin pathway in the hypothalamus of lean mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hipotálamo/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Masculino , Camundongos , RNA Mensageiro/metabolismo , Transdução de Sinais
20.
Cytokine ; 115: 1-7, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30616033

RESUMO

The study aimed to analyze the effects of aging and lifelong training on the main pro- and anti-inflammatory cytokines, and the impact of acute exercise on the expression of these cytokines. Thirty-nine participants were allocated into 3 groups: young (31.8 ±â€¯3.00 yrs.), middle-aged (54.2 ±â€¯5.9 yrs.) and master athletes (53.1 ±â€¯8.8 yrs.) and performed a maximal incremental test on a cycle ergometer. Blood samples were obtained before (Pre), 10 min post-exercise (Post) and 1 h post-exercise (Post 1 h). Mean VO2max was similar for master athletes and youngers and higher compared to the middle-aged group. Resting values of the IL-1ra, IL-1ß, IL-4, and IL-8 were higher in master athletes compared to the young and middle-aged groups (P < 0.01), while the highest values of IL-10 and IL-17 were observed for the youngers (29.49 ±â€¯18.00 pg/mL and 66.24 ±â€¯23.23 pg/mL, respectively) with the middle-aged group showing the lowest values (2.13 ±â€¯1.40 pg/mL). Acute exercise effects (Post) were observed for IL-1ß in the master athletes group, IL-6 in the young group and IL-4 for both groups (P < 0.05). No Post effects were observed for the middle-age group for all cytokines. The TNF-α/IL-10 ratio was higher in all moments for the middle-aged (P < 0.05). In conclusion, lifelong training helps to maintain the balance of pro- and anti-inflammatory cytokines, together with IL-10 levels close to those found in young adults.


Assuntos
Citocinas/metabolismo , Exercício Físico/fisiologia , Imunossenescência/fisiologia , Adulto , Atletas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA