Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446315

RESUMO

The properties of Bacillus thuringiensis strains as a biopesticide with potent action against moths, beetles, and mosquitoes have been known for decades, with individual subspecies showing specific activity against a particular pest. The aim of the present work is to characterize strains that can be used for broad-spectrum pest control in agriculture. Twenty strains of B. thuringiensis were isolated from Bulgarian soil habitats. The strains were screened for genes encoding 12 different crystal (Cry) endotoxins by PCR with specific primer pairs. Seven of the isolates contained cry genes in their genomes. B. thuringiensis strains PL1, PL3, and PL20 contained at least three different cry genes, while B. thuringiensis serovar galleriae BTG contained at least four. Moreover, scanning electron microscopy (SEM) investigation revealed the production of bipyramidal (PL1, PL3, PL20), polygonal (PL1), cubic (BTG), and spherical crystals (BTG and PL20). Potentially containing the most cry genes, the BTG genome was sequenced and annotated. It comprises 6,275,416 base pairs, does not contain plasmids, has a GC content of 35.05%, and contained 7 genes encoding crystal toxins: cry1Ab35, cry1Db, cry1Fb, cry1Ib, cry2Ab, cry8Ea1, and cry9Ba. This unique combination would possibly enable the simultaneous pesticidal action against pest species from orders Lepidoptera, Coleoptera, Diptera, and Hemiptera, as well as class Gastropoda. Whole-genome sequencing provided accurate information about the presence, localization, and classification of Cry toxins in B. thuringiensis BTG, revealing the great potential of the strain for the development of new broad-spectrum bio-insecticides.


Assuntos
Bacillus thuringiensis , Besouros , Dípteros , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Endotoxinas/genética , Endotoxinas/química , Mariposas/genética , Besouros/genética , Proteínas Hemolisinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Controle Biológico de Vetores
2.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070607

RESUMO

Intensive exploitation, poor recycling, low repeatable use, and unusual resistance of plastics to environmental and microbiological action result in accumulation of huge waste amounts in terrestrial and marine environments, causing enormous hazard for human and animal life. In the last decades, much scientific interest has been focused on plastic biodegradation. Due to the comparatively short evolutionary period of their appearance in nature, sufficiently effective enzymes for their biodegradation are not available. Plastics are designed for use in conditions typical for human activity, and their physicochemical properties roughly change at extreme environmental parameters like low temperatures, salt, or low or high pH that are typical for the life of extremophilic microorganisms and the activity of their enzymes. This review represents a first attempt to summarize the extraordinarily limited information on biodegradation of conventional synthetic plastics by thermophilic, alkaliphilic, halophilic, and psychrophilic bacteria in natural environments and laboratory conditions. Most of the available data was reported in the last several years and concerns moderate extremophiles. Two main questions are highlighted in it: which extremophilic bacteria and their enzymes are reported to be involved in the degradation of different synthetic plastics, and what could be the impact of extremophiles in future technologies for resolving of pollution problems.


Assuntos
Bactérias/metabolismo , Plásticos Biodegradáveis/metabolismo , Extremófilos/metabolismo , Biodegradação Ambiental
3.
Molecules ; 26(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808584

RESUMO

Novel biocompatible compounds that stabilize proteins in solution are in demand for biomedical and/or biotechnological applications. Here, we evaluated the effect of six ionic liquids, containing mono- or dicholinium [Chol]1or2 cation and anions of charged amino acids such as lysine [Lys], arginine [Arg], aspartic acid [Asp], or glutamic acid [Glu], on the structure, thermal, and storage stability of the Rapana thomasiana hemocyanin (RtH). RtH is a protein with huge biomedicinal potential due to its therapeutic, drug carrier, and adjuvant properties. Overall, the ionic liquids (ILs) induce changes in the secondary structure of RtH. However, the structure near the Cu-active site seems unaltered and the oxygen-binding capacity of the protein is preserved. The ILs showed weak antibacterial activity when tested against three Gram-negative and three Gram-positive bacterial strains. On the contrary, [Chol][Arg] and [Chol][Lys] exhibited high anti-biofilm activity against E. coli 25213 and S. aureus 29213 strains. In addition, the two ILs were able to protect RtH from chemical and microbiological degradation. Maintained or enhanced thermal stability of RtH was observed in the presence of all ILs tested, except for RtH-[Chol]2[Glu].


Assuntos
Aminoácidos/química , Gastrópodes/química , Hemocianinas/química , Líquidos Iônicos/química , Animais
4.
Biofouling ; 36(6): 679-695, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32741293

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen often associated with biofilm infections. This study evaluated the capacity for biofilm destruction of a novel combination of cationic polymer micelles formed from poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA-PCL-PDMAEMA) triblock copolymer either alone, or loaded with silver nanoparticles (M_AgNPs). Pre-formed P. aeruginosa biofilms were incubated with either blank micelles, AgNO3, or M_AgNPs. Biofilm biomass (crystal violet assay), metabolic activity (Alamar blue reduction), structure (SEM) and viability (CLSM after Live/Dead staining, or plating for CFU) were checked. The results showed that the micelles alone loosened the biofilm matrix, and caused some alterations in the bacterial surface. AgNO3 killed the bacteria in situ leaving dead biofilm bacteria on the surface. M_AgNPs combined the two types of activities causing significant biofilm reduction, and alteration and death of biofilm bacteria. Therefore, the applied PDMAEMA-based micelles appear to be a successful candidate for the treatment of P. aeruginosa biofilm infections.


Assuntos
Biofilmes , Nanopartículas Metálicas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Micelas , Polímeros , Prata/farmacologia
5.
Microbiology (Reading) ; 161(10): 1961-1977, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253522

RESUMO

Pseudomonas aeruginosa causes chronic lung infections in people with cystic fibrosis (CF) and acute opportunistic infections in people without CF. Forty-two P. aeruginosa strains from a range of clinical and environmental sources were collated into a single reference strain panel to harmonise research on this diverse opportunistic pathogen. To facilitate further harmonized and comparable research on P. aeruginosa, we characterized the panel strains for growth rates, motility, virulence in the Galleria mellonella infection model, pyocyanin and alginate production, mucoid phenotype, LPS pattern, biofilm formation, urease activity, and antimicrobial and phage susceptibilities. Phenotypic diversity across the P. aeruginosa panel was apparent for all phenotypes examined, agreeing with the marked variability seen in this species. However, except for growth rate, the phenotypic diversity among strains from CF versus non-CF sources was comparable. CF strains were less virulent in the G. mellonella model than non-CF strains (P = 0.037). Transmissible CF strains generally lacked O-antigen, produced less pyocyanin and had low virulence in G. mellonella. Furthermore, in the three sets of sequential CF strains, virulence, O-antigen expression and pyocyanin production were higher in the earlier isolate compared to the isolate obtained later in infection. Overall, this full phenotypic characterization of the defined panel of P. aeruginosa strains increases our understanding of the virulence and pathogenesis of P. aeruginosa and may provide a valuable resource for the testing of novel therapies against this problematic pathogen.


Assuntos
Fibrose Cística/complicações , Microbiologia Ambiental , Fenótipo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Animais , Modelos Animais de Doenças , Humanos , Lepidópteros/microbiologia , Dose Letal Mediana , Locomoção , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Análise de Sobrevida , Virulência
6.
Biotechnol Biotechnol Equip ; 29(2): 357-362, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26019652

RESUMO

Enterocytes are unique cells governing an array of processes. They are covered by the gut glycocalyx, which is an extraneous carbohydrate-rich coat and an integral part of the plasma membrane. The intestinal glycocalyx and secreted mucins constitute a glycosylated milieu which has a number of physiological and protective functions. One of the important functions of the glycocalyx is its barrier function against microbial adherence to different membrane glycolipids. Thus, the glycocalyx is an important part of the mucosal immune system in newborns. The aim of our study was to identify the carbohydrates in the small bowel glycocalyx of Balb/c mice at different ages. We used plant lectins with different sugar specificities. Fluorescein-labelled lectins binding different carbohydrate moieties were detected using confocal laser scanning microscopy. Biotinilated lectins were used for transmission electron microscopy observations of the constituents of the gut glycocalyx at different periods of postnatal development in mice. Different carbohydrate moieties that were identified in the murine intestinal glycocalyx followed different distribution patterns and characteristics. Carbohydrates present on the mucus surface depended on tissue localization, cell type and stage of development. The distribution and mucins glycosylation could be of interest in analysing the response of the mucosal barrier to intestinal pathogens causing infection or inflammation.

7.
Can J Microbiol ; 60(3): 173-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24588391

RESUMO

In a previous study, we described 2 forms of cyclic enterobacterial common antigen (ECACYC), a tetramer and a pentamer, from Escherichia coli O157. ECACYC is present in several representatives of the Enterobacteriaceae. To date, functional studies on ECACYC are sparse. Cyclic oligosaccharides in other bacteria, like the cyclic ß-glucans in Rhizobiaceae, represent microbe-associated molecular patterns involved in host-bacteria interaction. This observation determined the aim of the present study: to test whether the tetrameric and pentameric ECACYC from E. coli O157 can be recognised by host humoral and cellular mechanisms. ELISA tests designed to compare the 2 ECACYC with the O157 lipopolysaccharide showed that both ECACYC were not recognised by polyclonal anti-O157 serum but were good ligands for mannan-binding lectin. The lectin had a higher affinity for the tetramer than the pentamer. ECACYC deposited more C3b than did the lipopolysaccharide. To examine the interactions with human circulating neutrophils, the antigens were loaded onto fluorescent latex beads and applied in a phagocytosis experiment. Spheres coated with the 2 ECACYC occasionally adhered to phagocyte surfaces but, unlike O157-loaded spheres, failed to induce free-radical release. The results show that the 2 ECACYC represent microbe-associated molecular patterns recognised by host humoral non-self-recognition mechanisms.


Assuntos
Antígenos de Bactérias/isolamento & purificação , Escherichia coli O157/imunologia , Fagocitose , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Radicais Livres/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Soros Imunes/imunologia , Ligantes , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Lectina de Ligação a Manose/metabolismo , Microesferas , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , beta-Glucanas/imunologia , beta-Glucanas/metabolismo
8.
World J Microbiol Biotechnol ; 30(5): 1661-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24366816

RESUMO

The study focuses on the morphological and physiological cell responses to oxidative stress induced by high temperature treatment in the industrially relevant fungus Aspergillus niger 26. Temperatures above 30 °C lead to growth suppression and changes in morphological characteristics: decrease in the size of hyphal elements and increase in "active length" by switching from slightly branched long filaments to a multitude of branched forms containing active cytoplasm. Transmission electron microscopy of fungal cultures heated at 40 °C demonstrated abnormal wavy septation with reduced amount of chitin (as shown by WGA-gold labelling), intrahyphal hyphae development, disintegration of mitochondria and extensive autolysis. Temperature-dependent decrease in the total intracellular protein content and a sharp increase (six to tenfold) in oxidatively damaged proteins were also demonstrated. Elevated temperatures caused a two and threefold increase in catalase and superoxide dismutase activities, respectively.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/ultraestrutura , Proteínas Fúngicas/metabolismo , Estresse Oxidativo/fisiologia , Aspergillus niger/metabolismo , Biomassa , Catalase/metabolismo , Temperatura Alta , Hifas/crescimento & desenvolvimento , Hifas/ultraestrutura , Microscopia Eletrônica de Transmissão , Superóxido Dismutase/metabolismo
9.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38794143

RESUMO

The formation of microbial biofilm is a self-organizing process among bacterial cells, regulated by quorum-sensing (QS) mechanisms, contributing to development of infections. These processes, either separately or in combination, significantly contribute to bacterial resistance to antibiotics and disinfectants. A novel approach to addressing the challenge of treating infections due to antibacterial resistance involves the use of plant metabolites. In recent years, there has been increasing recognition of different phytochemicals as potential modulators. In our study, we evaluated the synergistic effect of chloroform and methanol extracts from Inula species against key virulence factors, including biofilm formation, violacein production, and swarming motility. Each of the 11 examined plant extracts demonstrated the ability to reduce biofilms and pigment synthesis in C. violaceum. Two of the extracts from I. britannica exhibited significant anti-biofilm and anti-quorum-sensing effects with over 80% inhibition. Their inhibitory effect on violacein synthesis indicates their potential as anti-QS agents, likely attributed to their high concentration of terpenoids (triterpenoids, sesquiterpene lactones, and diterpenoids). Scanning electron microscopy revealed a notable reduction in biofilm biomass, along with changes in biofilm architecture and cell morphology. Additionally, fluorescence microscopy revealed the presence of metabolically inactive cells, indicating the potent activity of the extracts during treatment. These new findings underscore the effectiveness of the plant extracts from the genus Inula as potential anti-virulent agents against C. violaceum. They also propose a promising strategy for preventing or treating its biofilm formation.

10.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39065695

RESUMO

In this study, UHPLC-HRMS analysis of the defatted methanol extract obtained from Inula salicina L. led to the identification of 58 compounds-hydroxycinnamic and hydroxybenzoic acids and their glycosides, acylquinic and caffeoylhexaric acids, and flavonoids and their glycosides. In addition, a new natural compound, N-(8-methylnepetin)-3-hydroxypiperidin-2-one was isolated and its structure was elucidated by NMR spectroscopy. The presence of a flavoalkaloid in genus Inula is described now for the first time. Chlorogenic acid was the main compound followed by 3,5-, 1,5- and 4,5-dicaffeoylquinic acids. The methanol extract was studied for its antioxidant potential by DPPH, ABTS, and FRAP assays and sun protective properties. In addition, a study was conducted to assess the effectiveness of the tested extract in inhibiting biofilm formation by Gram-positive and Gram-negative strains. Results from crystal violet tests revealed a notable decrease in biofilm mass due to the extract. The anti-biofilm efficacy was confirmed through the observation of the biofilm viability by live/dead staining. The obtained results showed that this plant extract could be used in the development of cosmetic products with antibacterial and sun protection properties.

11.
Pharmaceutics ; 16(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399223

RESUMO

Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable of inhibiting biofilm formation. This is considered a promising antivirulence strategy that could potentially overcome antibiotic resistance issues. Effective antibiofilm agents should possess distinctive properties. They should be structurally unique, enable easy entry into cells, influence quorum sensing signaling, and synergize with other antibacterial agents. Many of these properties are found in both natural systems that are isolated from plants and in synthetic systems like nanoparticles and nanocomposites. In this review, we discuss the clinical nature of biofilm-associated infections and some of the mechanisms associated with their antibiotic tolerance. We focus on the advantages and efficacy of various natural and synthetic compounds as a new therapeutic approach to control bacterial biofilms and address multidrug resistance in bacteria.

12.
Life (Basel) ; 14(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38792588

RESUMO

Reptiles are known to be asymptomatic carriers of various zoonotic pathogens. A number of Gram-negative opportunistic commensals are causative agents of bacterial infections in immunocompromised or stressed hosts and are disseminated by reptiles, whose epidemiological role should not be neglected. Since most studies have focused on exotic species, in captivity or as pet animals, the role of wild populations as a potential source of pathogens still remains understudied. In the present study, we isolated a variety of Gram-negative bacteria from the cloacal microbiota of free-living lizard and tortoise hosts (Reptilia: Sauria and Testudines) from the Bulgarian herpetofauna. We evaluated their pathogenic potential according to their antibiotic susceptibility patterns, biofilm-forming capacity, and extracellular production of some enzymes considered to play roles as virulence factors. To our knowledge, the phenotypic manifestation of virulence factors/enzymatic activity and biofilm formation in wild reptile microbiota has not yet been widely investigated. All isolates were found to be capable of forming biofilms to some extent and 29.6% of them could be categorized as strong producers. Two strains proved to be excellent producers. The majority of the isolated strains showed extracellular production of at least one exoenzyme. The most pronounced pathogenicity could be attributed to the newly isolated Pseudomonas aeruginosa strain due to its multiresistance, excellent biofilm formation, and expression of exoenzymes.

13.
BioTech (Basel) ; 12(1)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36975313

RESUMO

The tremendous problem with plastic waste accumulation has determined an interest in biodegradation by effective degraders and their enzymes, such as thermophilic enzymes, which are characterized by high catalytic rates, thermostability, and optimum temperatures close to the melting points of some plastics. In the present work, we report on the ability of a thermophilic lipase, by Brevibacillus thermoruber strain 7, to degrade Ɛ-polycaprolactone (PCL), as well as the enzyme purification, the characterization of its physicochemical properties, the product degradation, and its disruptive effect on the PCL surface. The pure enzyme showed the highest reported optimum temperature at 55 °C and a pH of 7.5, while its half-life at 60 °C was more than five hours. Its substrate specificity referred the enzyme to the subgroup of lipases in the esterase group. A strong inhibitory effect was observed by detergents, inhibitors, and Fe3+ while Ca2+ enhanced its activity. The monomer Ɛ-caprolactone was a main product of the enzyme degradation. Similar elution profiles of the products received after treatment with ultra-concentrate and pure enzyme were observed. The significant changes in PCL appearance comprising the formation of shallower or deeper in-folds were observed after a week of incubation. The valuable enzyme properties of the lipase from Brevibacillus thermoruber strain 7, which caused a comparatively quick degradation of PCL, suggests further possible exploration of the enzyme for effective and environment-friendly degradation of PCL wastes in the area of thermal basins, or in thermophilic remediation processes.

14.
Folia Med (Plovdiv) ; 65(1): 124-130, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855984

RESUMO

INTRODUCTION: The number of published biofilm studies and novel ways for studying them has risen dramatically in recent years, ow-ing to the broad application of biofilms in medicine. Some bacteria develop biofilms that are highly resistant to antimicrobial agents, resulting in persistent infections. This necessitates the development of alternative methods for combating biofilms. In this regard, the application of cationic polymers is a good candidate for realization of this strategy. AIM: The aim of our study was to investigate the potential of a newly synthesized covalently attached star copolymer of N,N'-dimeth-ylaminoethyl methacrylate and hydroxyl-bearing oligo(ethylene glycol) methacrylate [P(DMAEMA-co-HOEGMA)] to silica surfaces and its quaternized version [P(QDMAEMA-co-HOEGMA)] for destruction of biofilms formed by Bacillus subtilis or Pseudomonas aeruginosa. MATERIALS AND METHODS: Model strains representing different genera and taxonomic groups were selected for the study. The anti-biofilm activities of two different newly synthesized cationic polymers were investigated by observation (live/dead staining) of the viability of bacterial cells within the biofilm. RESULTS: The results obtained by the live/dead labeling of bacterial biofilms show a substantial decrease in the viability of population in the presence of cationic polymers, better expressed at B. subtilis. CONCLUSIONS: The studied two immobilized on silica wafers newly synthesized star copolymers exhibited potential for anti-biofilm effects. The results demonstrated combined potential for reducing the viability of bacterial cells within the biofilms and probably for loosening the biofilm matrix. The effect was better expressed in B. subtilis.


Assuntos
Biofilmes , Metacrilatos , Metacrilatos/farmacologia , Polímeros/farmacologia , Dióxido de Silício
15.
Materials (Basel) ; 16(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895608

RESUMO

Bacterial infection is one of the most common and harmful medical issues following the implantation of materials and devices in the body leading to antibiotic resistance of diverse bacterial strains. In this work, a novel approach is presented combining adopted laser-based patterning method in addition to doping (Mg and Zn) metal ions to prepare calcium phosphate ceramic substrate, applicable in medicine, with enhanced surface antimicrobial characteristics. The preparation of tablets containing Mg (8.44 mol%) and Zn (2.63 mol%) ß-tricalcium phosphate involved biomimetic precipitation of amorphous calcium phosphate in media of simulated body fluid enriched with Mg2+ and Zn2+ ions as well as the presence of valine as an organic additive, followed by step-wise calcination up to 1000 °C. The results from laser processing showed formation of deeper patterns with increased surface roughness (from 4.9 µm to 9.4 µm) as laser power and velocity increase, keeping constant the hatch sizes of 50 µm. The textured surfaces consist of peaks and valleys arrangement that change the morphology of Escherichia coli cells and decrease of cell viability. Our study reveals the possibilities of the application of ultra-short laser radiation as a potential alternative therapy for controlling the antimicrobial effect of the ceramic surface.

16.
Pharmaceutics ; 15(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37111633

RESUMO

In this work, mixed polymeric micelles (MPMs) based on a cationic poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA29-b-PCL70-b-PDMAEMA29) and a non-ionic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO99-b-PPO67-b-PEO99) triblock copolymers, blended at different molar ratios, were developed. The key physicochemical parameters of MPMs, including size, size distribution, and critical micellar concentration (CMC), were evaluated. The resulting MPMs are nanoscopic with a hydrodynamic diameter of around 35 nm, and the ζ-potential and CMC values strongly depend on the MPM's composition. Ciprofloxacin (CF) was solubilized by the micelles via hydrophobic interaction with the micellar core and electrostatic interaction between the polycationic blocks, and the drug localized it, to some extent, in the micellar corona. The effect of a polymer-to-drug mass ratio on the drug-loading content (DLC) and encapsulation efficiency (EE) of MPMs was assessed. MPMs prepared at a polymer-to-drug mass ratio of 10:1 exhibited very high EE and a prolonged release profile. All micellar systems demonstrated their capability to detach pre-formed Gram-positive and Gram-negative bacterial biofilms and significantly reduced their biomass. The metabolic activity of the biofilm was strongly suppressed by the CF-loaded MPMs indicating the successful drug delivery and release. The cytotoxicity of empty and CF-loaded MPMs was evaluated. The test reveals composition-dependent cell viability without cell destruction or morphological signs of cell death.

17.
Biodivers Data J ; 11: e100525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327371

RESUMO

As a result of the continuous revision of cyanobacterial taxonomy, Phormidiumautumnale (Agardh) Trevisan ex Gomont, 1892 has been transferred to the genus Microcoleus as Microcoleusautumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013. This transfer was based on a single strain and literature data. In the present study, we revise the taxonomic position of Microcoleusautumnalis by applying the classical approach of polyphasic taxonomy and additionally using metabolomics. Cyanobacterial strains identified as Phormidiumautumnale and Microcoleusvaginatus (type species of the genus Microcoleus) were used for comparative analyses. In addition, the taxonomic relationship between the species Phormidiumautumnale and Phormidiumuncinatum was determined on the basis of polyphasic characteristics. Monitoring of the morphological variability of Phormidiumautumnale and Microcoleusvaginatus strains showed a difference in the morphology concerning the ends of the trichomes, the shape of the apical cells, as well as the presence/absence of the calyptra and its shape. The performed TEM analysis of the thylakoid arrangement of the studied strains showed parietal arrangement of the thylakoids in the representatives of genus Phormidium and fascicular arrangement in genus Microcoleus. Molecular genetic analyses, based on 16S rDNA, revealed grouping of the investigated P.autumnale strains in a separate clade. This clade is far from the subtree, which is very clearly formed by the representatives of the type species of genus Microcoleus, namely M.vaginatus. The metabolomic analysis involving P.autumnale and M.vaginatus strains identified 39 compounds that could be used as potential biochemical markers to distinguish the two cyanobacterial species. Based on the data obtained, we suggest changing of the current status of Microcoleusautumnalis by restoring its previous appurtenance to the genus Phormidium under the name Phormidiumautumnale (Agardh) Trevisan ex Gomont, 1892 and distinguishing this species from genus Microcoleus.

18.
Microorganisms ; 11(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38137991

RESUMO

Traditional milk products, widely consumed in many countries for centuries, have been drawing renewed attention in recent years as sources of bacteria with possible bioprotective properties. One such product for which only limited information exists is the traditional Bulgarian "katak". This fermented yogurt-like product, renowned for its taste and long-lasting properties, possesses specific sensory characteristics. In this study, 18 lactic acid bacteria (LABs) were isolated from artisanal samples made in the Northwest part of Bulgaria. A polyphasic taxonomic approach combining classical phenotypic and molecular taxonomic methods, such as multiplex PCR, 16S rDNA sequencing, and MALDI-TOF MS, was applied, leading to the identification of 13 strains. The dominance of Lactiplantibacillus plantarum was confirmed. In vitro tests with the identified strains in model systems showed a promising broad strain-specific spectrum of activity against food-borne and human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli). Non-purified Lactobacillus postbiotics, produced during fermentation in skimmed and soya milks and in MRS broth, were estimated as limiting agents of virulence factors. The LAB's production of lactate, acetate, and butyrate is a promising probiotic feature. A further characterization of the active strains and analysis of the purified post-metabolites are needed and are still in progress.

19.
PLoS One ; 18(3): e0282729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888689

RESUMO

The leaves of Azadirachta indica L. and Melia azedarach L., belonging to Meliaceae family, have been shown to have medicinal benefits and are extensively employed in traditional folk medicine. Herein, HPLC analysis of the ethyl acetate fraction of the total methanolic extract emphasized the enrichment of both A. indica L., and M. azedarach L. leaves extracts with phenolic and flavonoids composites, respectively. Besides, 4 limonoids and 2 flavonoids were isolated using column chromatography. By assessing the in vitro antiviral activities of both total leaves extracts against Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV-2), it was found that A. indica L. and M. azedarach L. have robust anti-SARS-CoV-2 activities at low half-maximal inhibitory concentrations (IC50) of 8.451 and 6.922 µg/mL, respectively. Due to the high safety of A. indica L. and M. azedarach L. extracts with half-maximal cytotoxic concentrations (CC50) of 446.2 and 351.4 µg/ml, respectively, both displayed extraordinary selectivity indices (SI>50). A. indica L. and M. azedarach L. leaves extracts could induce antibacterial activities against both Gram-negative and positive bacterial strains. The minimal inhibitory concentrations of A. indica L. and M. azedarach L. leaves extracts varied from 25 to 100 mg/mL within 30 min contact time towards the tested bacteria. Our findings confirm the broad-spectrum medicinal value of A. indica L. and M. azedarach L. leaves extracts. Finally, additional in vivo investigations are highly recommended to confirm the anti-COVID-19 and antimicrobial activities of both plant extracts.


Assuntos
Azadirachta , COVID-19 , Melia azedarach , SARS-CoV-2 , Antibacterianos/farmacologia , Antibacterianos/análise , Bactérias , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Folhas de Planta/química , Flavonoides/farmacologia , Flavonoides/análise
20.
Antonie Van Leeuwenhoek ; 102(1): 105-19, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22419503

RESUMO

It has recently been shown that pathogens with a limited capacity for sessile growth (like some Escherichia coli O157 strains) can benefit from the presence of other bacteria and form mixed biofilms with companion strains. This study addresses the question whether pathogens may influence attached growth of E. coli non-pathogenic strains via secreted factors. We compared the biofilm-modulating effects of sterile stationary-phase culture media of a biofilm non-producing strain of E. coli O157:H, a laboratory biofilm-producing E. coli K-12 strain and a biofilm-forming strain of the pathogen Yersina enterocolitica O:3. Sessile growth was monitored as biomass (crystal violet assay), exopolysaccharide (ELLA) and morphology (scanning electron and confocal laser microscopy). With two of the E. coli K-12 strains stimulation of biofilm formation by all supernatants was achieved, but only the pathogens' secreted products induced biomass increase in some 'biofilm-deficient' K-12 strains. Lectin-peroxidase labeling indicated changes in colanic acid and poly-N-acetylglucosamine amounts in extracellular matrices. The contribution of indole, protein and polysaccharide to the biofilm-modulating activities of the supernatants was compared. Indole, in concentrations equal to those established in the supernatants, suppressed sessile growth in one K-12 strain. Proteinase K significantly reduced the stimulatory effects of all supernatants, indicating a prominent role of protein/peptide factor(s) in biofilm promotion. The amount of released polysaccharides (rPS) in the supernatants was quantitated then comparable quantities of isolated rPS were applied during biofilm growth. The three rPS had notable strain-specific effects with regard to both the strain-source of the rPS and the E. coli K-12 target strain.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Escherichia coli K12/fisiologia , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/metabolismo , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/metabolismo , Biomassa , Escherichia coli K12/citologia , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Violeta Genciana/metabolismo , Indóis/metabolismo , Interações Microbianas , Microscopia Confocal , Microscopia Eletrônica de Varredura , Polissacarídeos Bacterianos/análise , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA