Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 101(1): 20-28, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30682299

RESUMO

Potato virus Y (PVY) is a serious threat to potato production due to effects on tuber yield and quality, in particular, due to induction of potato tuber necrotic ringspot disease (PTNRD), typically associated with recombinant strains of PVY. These recombinant strains have been spreading in the United States for the past several years, although the reasons for this continuing spread remained unclear. To document and assess this spread between 2011 and 2015, strain composition of PVY isolates circulating in the Columbia Basin potato production area was determined from hundreds of seed lots of various cultivars. The proportion of nonrecombinant PVYO isolates circulating in Columbia Basin potato dropped ninefold during this period, from 63% of all PVY-positive plants in 2011 to less than 7% in 2015. This drop in PVYO was concomitant with the rise of the recombinant PVYN-Wi strain incidence, from less than 27% of all PVY-positive plants in 2011 to 53% in 2015. The proportion of the PVYNTN recombinant strain, associated with PTNRD symptoms in susceptible cultivars, increased from 7% in 2011 to approximately 24% in 2015. To further address the shift in strain abundance, screenhouse experiments were conducted and revealed that three of the four most popular potato cultivars grown in the Columbia Basin exhibited strain-specific resistance against PVYO. Reduced levels of systemic movement of PVYO in such cultivars would favor spread of recombinant strains in the field. The negative selection against the nonrecombinant PVYO strain is likely caused by the presence of the Nytbr gene identified in potato cultivars in laboratory experiments. Presence of strain-specific resistance genes in potato cultivars may represent the driving force changing PVY strain composition to predominantly recombinant strains in potato production areas.

2.
Planta ; 239(6): 1243-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615233

RESUMO

The effects of soil temperature during tuber development on physiological processes affecting retention of postharvest quality in low-temperature sweetening (LTS) resistant and susceptible potato cultivars were investigated. 'Premier Russet' (LTS resistant), AO02183-2 (LTS resistant) and 'Ranger Russet' (LTS susceptible) tubers were grown at 16 (ambient), 23 and 29 °C during bulking (111-164 DAP) and maturation (151-180 DAP). Bulking at 29 °C virtually eliminated yield despite vigorous vine growth. Tuber specific gravity decreased as soil temperature increased during bulking, but was not affected by temperature during maturation. Bulking at 23 °C and maturation at 29 °C induced higher reducing sugar levels in the proximal (basal) ends of tubers, resulting in non-uniform fry color at harvest, and abolished the LTS-resistant phenotype of 'Premier Russet' tubers. AO02183-2 tubers were more tolerant of heat for retention of LTS resistance. Higher bulking and maturation temperatures also accelerated LTS and loss of process quality of 'Ranger Russet' tubers, consistent with increased invertase and lower invertase inhibitor activities. During LTS, tuber respiration fell rapidly to a minimum as temperature decreased from 9 to 4 °C, followed by an increase to a maximum as tubers acclimated to 4 °C; respiration then declined over the remaining storage period. The magnitude of this cold-induced acclimation response correlated directly with the extent of buildup in sugars over the 24-day LTS period and thus reflected the effects of in-season heat stress on propensity of tubers to sweeten and lose process quality at 4 °C. While morphologically indistinguishable from control tubers, tubers grown at elevated temperature had different basal metabolic (respiration) rates at harvest and during cold acclimation, reduced dormancy during storage, greater increases in sucrose and reducing sugars and associated loss of process quality during LTS, and reduced ability to improve process quality through reconditioning. Breeding for retention of postharvest quality and LTS resistance should consider strategies for incorporating more robust tolerance to in-season heat stress.


Assuntos
Temperatura Baixa , Temperatura Alta , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Estresse Fisiológico , Consumo de Oxigênio , Tubérculos/química , Tubérculos/metabolismo , Solo , Solanum tuberosum/química , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Sacarose/química , Sacarose/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA