Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38136492

RESUMO

Significant seismic activity has been witnessed in the area of Ridgecrest (Southern California) over the past 40 years, with the largest being the Mw 5.8 event on 20 September 1995. In July 2019, a strong earthquake of Mw 7.1, preceded by a Mw 6.4 foreshock, impacted Ridgecrest. The mainshock triggered thousands of aftershocks that were thoroughly documented along the activated faults. In this study, we analyzed the spatiotemporal variations of the frequency-magnitude distribution in the area of Ridgecrest using the fragment-asperity model derived within the framework of non-extensive statistical physics (NESP), which is well-suited for investigating complex dynamic systems with scale-invariant properties, multi-fractality, and long-range interactions. Analysis was performed for the entire duration, as well as within various time windows during 1981-2022, in order to estimate the qM parameter and to investigate how these variations are related to the dynamic evolution of seismic activity. In addition, we analyzed the spatiotemporal qM value distributions along the activated fault zone during 1981-2019 and during each month after the occurrence of the Mw 7.1 Ridgecrest earthquake. The results indicate a significant increase in the qM parameter when large-magnitude earthquakes occur, suggesting the system's transition in an out-of-equilibrium phase and its preparation for seismic energy release.

2.
Entropy (Basel) ; 25(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37190455

RESUMO

Greece exhibits the highest seismic activity in Europe, manifested in intense seismicity with large magnitude events and frequent earthquake swarms. In the present work, we analyzed the spatiotemporal properties of recent earthquake swarms that occurred in the broader area of Greece using the Non-Extensive Statistical Physics (NESP) framework, which appears suitable for studying complex systems. The behavior of complex systems, where multifractality and strong correlations among the elements of the system exist, as in tectonic and volcanic environments, can adequately be described by Tsallis entropy (Sq), introducing the Q-exponential function and the entropic parameter q that expresses the degree of non-additivity of the system. Herein, we focus the analysis on the 2007 Trichonis Lake, the 2016 Western Crete, the 2021-2022 Nisyros, the 2021-2022 Thiva and the 2022 Pagasetic Gulf earthquake swarms. Using the seismicity catalogs for each swarm, we investigate the inter-event time (T) and distance (D) distributions with the Q-exponential function, providing the qT and qD entropic parameters. The results show that qT varies from 1.44 to 1.58, whereas qD ranges from 0.46 to 0.75 for the inter-event time and distance distributions, respectively. Furthermore, we describe the frequency-magnitude distributions with the Gutenberg-Richter scaling relation and the fragment-asperity model of earthquake interactions derived within the NESP framework. The results of the analysis indicate that the statistical properties of earthquake swarms can be successfully reproduced by means of NESP and confirm the complexity and non-additivity of the spatiotemporal evolution of seismicity. Finally, the superstatistics approach, which is closely connected to NESP and is based on a superposition of ordinary local equilibrium statistical mechanics, is further used to discuss the temporal patterns of the earthquake evolution during the swarms.

3.
Oncogene ; 42(9): 679-692, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599922

RESUMO

Breast cancer stem cells (BCSC) are presumed to be responsible for treatment resistance, tumor recurrence and metastasis of breast tumors. However, development of BCSC-targeting therapies has been held back by their heterogeneity and the lack of BCSC-selective molecular targets. Here, we demonstrate that RAC1B, the only known alternatively spliced variant of the small GTPase RAC1, is expressed in a subset of BCSCs in vivo and its function is required for the maintenance of BCSCs and their chemoresistance to doxorubicin. In human breast cancer cell line MCF7, RAC1B is required for BCSC plasticity and chemoresistance to doxorubicin in vitro and for tumor-initiating abilities in vivo. Unlike Rac1, Rac1b function is dispensable for normal mammary gland development and mammary epithelial stem cell (MaSC) activity. In contrast, loss of Rac1b function in a mouse model of breast cancer hampers the BCSC activity and increases their chemosensitivity to doxorubicin treatment. Collectively, our data suggest that RAC1B is a clinically relevant molecular target for the development of BCSC-targeting therapies that may improve the effectiveness of doxorubicin-mediated chemotherapy.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Mamárias Animais/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia
4.
In Vivo ; 31(4): 527-542, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652417

RESUMO

K-ras oncogene is a key factor in colorectal cancer. Based on published and our data we propose that K-ras could be the oncogene responsible for the inactivation of the tumor-suppressor gene APC, currently considered as the initial step in colorectal tumorigenesis. K-ras fulfills the criteria of the oncogene-induced DNA damage model, as it can provoke well-established causes for inactivating tumor-suppressors, i.e. DNA double-strand breaks (causing allele deletion) and ROS production (responsible for point mutation). The model we propose is a variation of the currently existing model and hypothesizes that, in a subgroup of colorectal carcinomas, K-ras mutation may precede APC inactivation, representing the earliest driving force and, probably, an early biomarker of colorectal carcinogenesis. This observation is clinically useful, since it may modify the preventive colorectal cancer strategy, restricting numerically patients undergoing colonoscopies to those bearing K-ras mutation in their colorectum, either in benign polyps or the normal accompanying mucosa.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Colo/patologia , Neoplasias Colorretais/patologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Humanos , Mutação , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA