Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 31(6): 2036-42, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25602470

RESUMO

Changes in temperature were found to affect the morphology, cell viability, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. S. epidermidis biofilms are commonly associated with hospital-acquired medical device infections. We observed the effect of heat treatment on three physical properties of the biofilms: the bacterial cell morphology and viability, the polymeric properties of the extracellular polymeric substance (EPS), and the rheological properties of the bulk biofilm. After application of a 1 h heat treatment at 45 °C, cell reproduction had ceased, and at 60 °C, cell viability was significantly reduced. Size exclusion chromatography was used to fractionate the extracellular polymeric substance (EPS) based on size. Chemical analysis of each fraction showed that the relative concentrations of the polysaccharide, protein, and DNA components of the EPS were unchanged by the heat treatment at 45 and 60 °C. The results suggest that the EPS molecular constituents are not significantly degraded by the temperature treatment. However, some aggregation on the scale of 100 nm was found by dynamic light scattering at 60 °C. Finally, relative to control biofilms maintained at 37 °C, we observed an order of magnitude reduction in the biofilm yield stress after 60 °C temperature treatment. No such difference was found for treatment at 45 °C. From these results, we conclude that the yield stress of bacterial biofilms is temperature-sensitive and that this sensitivity is correlated with cell viability. The observed significant decrease in yield stress with temperature suggests a means to weaken the mechanical integrity of S. epidermidis biofilms with applications in areas such as the treatment of biofilm-infected medical devices.


Assuntos
Aderência Bacteriana , Biofilmes , Biopolímeros/metabolismo , Fenômenos Mecânicos , Staphylococcus epidermidis/fisiologia , Temperatura , Fenômenos Biomecânicos , Sobrevivência Celular , Módulo de Elasticidade , Espaço Extracelular/metabolismo , Hidrodinâmica , Peso Molecular , Reologia , Staphylococcus epidermidis/citologia , Staphylococcus epidermidis/metabolismo , Estresse Mecânico
2.
Soft Matter ; 9(1): 122-131, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25544855

RESUMO

We developed a method to grow Staphylococcus epidermidis bacterial biofilms and characterize their rheological properties in situ in a continuously fed bioreactor incorporated into a parallel plate rheometer. The temperature and shear rates of growth modeled bloodstream conditions, a common site of S. epidermidis infection. We measured the linear elastic (G') and viscous moduli (G″) of the material using small-amplitude oscillatory rheology and the yield stress using non-linear creep rheology. We found that the elastic and viscous moduli of the S. epidermidis biofilm were 11 ± 3 Pa and 1.9 ± 0.5 Pa at a frequency of 1 Hz (6.283 rad per s) and that the yield stress was approximately 20 Pa. We modeled the linear creep response of the biofilm using a Jeffreys model and found that S. epidermidis has a characteristic relaxation time of approximately 750 seconds and a linear creep viscosity of 3000 Pa s. The effects on the linear viscoelastic moduli of environmental stressors, such as NaCl concentration and extremes of temperature, were also studied. We found a non-monotonic relationship between moduli and NaCl concentrations, with the stiffest material properties found at human physiological concentrations (135 mM). Temperature dependent rheology showed hysteresis in the moduli when heated and cooled between 5 °C and 60 °C. Through these experiments, we demonstrated that biofilms are rheologically complex materials that can be characterized by a combination of low modulus (~10 Pa), long relaxation time (~103 seconds), and a finite yield stress (20 Pa). This suggests that biofilms should be viewed as soft viscoelastic solids whose properties are determined in part by local environmental conditions. The in situ growth method introduced here can be adapted to a wide range of biofilm systems and applied over a broad spectrum of rheological and environmental conditions because the technique minimizes the risk of irreversible, non-linear deformation of the microbial specimen before analysis.

3.
J Biomed Mater Res A ; 107(11): 2556-2566, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31355999

RESUMO

Minimal studies exist investigating biofilm-induced corrosion of orthopaedic implants. This study investigates potential contributions of Pseudomonas aeruginosa and Staphylococcus aureus biofilms on corrosion resistance of CoCrMo under static and fretting conditions. Biofilms were cultured on CoCrMo coupons for either 4 weeks (static culture) or 6 days (fretting culture; pin-on-disk with a Ti6Al4V hemispherical tip pin). Morphology of biofilms and corrosion of coupon surfaces were analyzed via SEM. Open circuit potential and electrochemical impedance spectroscopy measurements were collected for corrosion performance evaluation. Results showed no visible corrosion on coupon surfaces in static culture, which suggests these biofilms alone do not induce severe corrosion under the conditions of this study. However, electrochemical data showed biofilm presence lowered coupon electrochemical impedance in static and fretting cultures, suggesting resistive and capacitive characteristics of the metal oxide-biofilm-media interface were altered. Under fretting, the P. aeruginosa group exhibited a distinct damage morphology and Co:Cr:Mo ratio within the wear scar when compared with S. aureus and the bacteria-free control. These differences suggest the presence of P. aeruginosa biofilms may negatively impact corrosion resistance at the fretting interface. Taken together these results demonstrate biofilms can contribute to implant corrosion by influencing the electrochemical impedance of implant metal surfaces.


Assuntos
Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Vitálio/farmacologia , Ligas , Biofilmes/crescimento & desenvolvimento , Corrosão , Titânio/química , Titânio/farmacologia , Vitálio/química
4.
Shock ; 44(2): 121-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25784524

RESUMO

Given the increasing evidence of safe application of elevated temperature in other clinical contexts, we consider the potential for supplemental hyperthermia to augment the effects of vancomycin against staphylococci, a major source of postoperative and posttraumatic sepsis. Laboratory reference strains and libraries of clinical blood isolates of Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus, both as planktonic cells and as established biofilms, were assessed for thermosensitivity and increased susceptibility to vancomycin in the setting of thermal treatment. In addition to viability measures, patterns of stress gene expression were assessed with quantitative polymerase chain reaction, and structural changes were measured using quantitative transmission electron microscopy. Laboratory strains of both species had reduced growth and biofilm viability at 45°C, a temperature commonly used in other domains such as adjuvant treatments of malignancy. Blood isolates of S. epidermidis were consistent in this regard as well, but significant between-isolate variability in thermosensitivity was seen in blood isolates of S. aureus. Expression profiling and ultrastructural measurements confirmed that elevated temperature was a substantial stressor with or without vancomycin treatment. Our findings suggest that temperature elevations shown to be tolerated in humans in other settings hold the potential to be used as an adjuvant to antibiotic therapy against staphylococcal biofilms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Temperatura Alta , Testes de Sensibilidade Microbiana , Vancomicina/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Soro/química , Staphylococcus epidermidis/efeitos dos fármacos
5.
Appl Phys Lett ; 105(11): 114105, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25316925

RESUMO

Measurement of the elastic modulus of soft, viscoelastic liquids with cavitation rheometry is demonstrated for specimens as small as 1 µl by application of elasticity theory and experiments on semi-dilute polymer solutions. Cavitation rheometry is the extraction of the elastic modulus of a material, E, by measuring the pressure necessary to create a cavity within it [J. A. Zimberlin, N. Sanabria-DeLong, G. N. Tew, and A. J. Crosby, Soft Matter 3, 763-767 (2007)]. This paper extends cavitation rheometry in three ways. First, we show that viscoelastic samples can be approximated with the neo-Hookean model provided that the time scale of the cavity formation is measured. Second, we extend the cavitation rheometry method to accommodate cases in which the sample size is no longer large relative to the cavity dimension. Finally, we implement cavitation rheometry to show that the theory accurately measures the elastic modulus of viscoelastic samples with volumes ranging from 4 ml to as low as 1 µl.

6.
J Aerosol Med Pulm Drug Deliv ; 27(5): 392-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24476046

RESUMO

BACKGROUND: Aerosolized delivery of antibiotics is hindered by poor penetration within distal and plugged airways. Antibacterial perfluorocarbon ventilation (APV) is a proposed solution in which the lungs are partially or totally filled with perfluorocarbon (PFC) containing emulsified antibiotics. The purpose of this study was to evaluate emulsion stability and rheological, antibacterial, and pharmacokinetic characteristics. METHODS: This study examined emulsion aqueous droplet diameter and number density over 24 hr and emulsion and neat PFC viscosity and surface tension. Additionally, Pseudomonas aeruginosa biofilm growth was measured after 2-hr exposure to emulsion with variable aqueous volume percentages (0.25, 1, and 2.5%) and aqueous tobramycin concentrations (Ca=0.4, 4, and 40 mg/mL). Lastly, the time course of serum and pulmonary tobramycin concentrations was evaluated following APV and conventional aerosolized delivery of tobramycin in rats. RESULTS: The initial aqueous droplet diameter averaged 1.9±0.2 µm with little change over time. Initial aqueous droplet number density averaged 3.5±1.7×10(9) droplets/mL with a significant (p<0.01) decrease over time. Emulsion and PFC viscosity were not significantly different, averaging 1.22±0.03×10(-3) Pa·sec. The surface tensions of PFC and emulsion were 15.0±0.1×10(-3) and 14.6±0.6×10(-3) N/m, respectively, and the aqueous interfacial tensions were 46.7±0.3×10(-3) and 26.9±11.0×10(-3) N/m (p<0.01), respectively. Biofilm growth decreased markedly with increasing Ca and, to a lesser extent, aqueous volume percentage. Tobramycin delivered via APV yielded 2.5 and 10 times larger pulmonary concentrations at 1 and 4 hr post delivery, respectively, and significantly (p<0.05) lower serum concentrations compared with aerosolized delivery. CONCLUSIONS: The emulsion is bactericidal, retains the rheology necessary for pulmonary delivery, is sufficiently stable for this application, and results in increased pulmonary retention of the antibiotic.


Assuntos
Antibacterianos/administração & dosagem , Sistemas de Liberação de Medicamentos/normas , Fluorocarbonos/normas , Pulmão/microbiologia , Tobramicina/administração & dosagem , Animais , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Masculino , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Ratos , Ratos Sprague-Dawley , Tensão Superficial , Fatores de Tempo , Tobramicina/farmacocinética , Tobramicina/farmacologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA