Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Radiol Prot ; 39(2): 620-634, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31112514

RESUMO

The potential for adverse health effects from internal exposure to Plutonium has been recognised since its discovery in the 1940s. However, in the absence of specific information, potential risks from Plutonium exposure have always largely been controlled through knowledge of radiation exposure risks in general, much of which comes from external radiation exposures. To try to obtain more direct estimates of potential internal exposure risks, epidemiological studies of Plutonium workers need to be conducted. Such epidemiological analyses require individual Plutonium exposure estimates that are as accurate and unbiased as possible. The UK Sellafield workforce includes one of the world's largest cohorts of Plutonium workers, which constitutes, by some considerable margin, the group of workers most comprehensively monitored for internal exposure to this alpha-particle-emitter. However, for several hundred workers employed at the start of Plutonium work at the facility, during the period from 1952 through to 1963, the historical urinalysis results available cannot provide sufficiently accurate and unbiased exposure assessments needed for use in epidemiological studies. Consequently, these early workers have had to be excluded from epidemiological analyses and this has significantly reduced the power of these studies. A promising quantitative methodology to overcome the issue of missing or deficient exposure data, is to use exposure data from other sources to estimate the average exposure a 'typical worker' would have received, and to collate this information for specific occupations and years. This approach is called a Job-Exposure Matrix (JEM). Work on a pilot study to construct a population-specific quantitative JEM for the early Plutonium workers at Sellafield during 1952-1963, for whom reliable urinalysis results do not exist, has shown the potential for a JEM approach to produce more reliable and useful exposure estimates for epidemiological research.


Assuntos
Centrais Nucleares , Exposição Ocupacional , Plutônio , Exposição à Radiação , Humanos , Exposição Ocupacional/análise , Plutônio/efeitos adversos , Plutônio/urina , Exposição à Radiação/análise , Fatores de Tempo , Reino Unido , Urinálise
2.
J Radiol Prot ; 36(1): R1-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26861451

RESUMO

Any potential health effects of radiation emitted from radionuclides deposited in the bodies of workers exposed to radioactive materials can be directly investigated through epidemiological studies. However, estimates of radionuclide exposure and consequent tissue-specific doses, particularly for early workers for whom monitoring was relatively crude but exposures tended to be highest, can be uncertain, limiting the accuracy of risk estimates. We review the use of job-exposure matrices (JEMs) in peer-reviewed epidemiological and exposure assessment studies of nuclear industry workers exposed to radioactive materials as a method for addressing gaps in exposure data, and discuss methodology and comparability between studies. We identified nine studies of nuclear worker cohorts in France, Russia, the USA and the UK that had incorporated JEMs in their exposure assessments. All these JEMs were study or cohort-specific, and although broadly comparable methodologies were used in their construction, this is insufficient to enable the transfer of any one JEM to another study. Moreover there was often inadequate detail on whether, or how, JEMs were validated. JEMs have become more detailed and more quantitative, and this trend may eventually enable better comparison across, and the pooling of, studies. We conclude that JEMs have been shown to be a valuable exposure assessment methodology for imputation of missing exposure data for nuclear worker cohorts with data not missing at random. The next step forward for direct comparison or pooled analysis of complete cohorts would be the use of transparent and transferable methods.


Assuntos
Biometria/métodos , Exposição Ocupacional/análise , Plutônio/efeitos adversos , França , Humanos , Exposição Ocupacional/efeitos adversos , Federação Russa , Reino Unido , Estados Unidos
3.
Radiat Res ; 191(1): 60-66, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398393

RESUMO

Plutonium is a radiologically significant alpha-particle emitter. The potential for adverse health effects from internal exposures due to plutonium intakes has been recognized since the 1940s. The workforce of the Sellafield nuclear facility (Cumbria, UK), includes one of the world's most important groups of plutonium-exposed workers for studying the potential health risks of this internal exposure. However, for several hundred workers employed at the start of plutonium work at the facility (1952-1963), historical monitoring records based on measurements of urinary excretion of plutonium are not sufficiently reliable to provide the accurate and unbiased exposure assessments needed for epidemiological studies. Consequently, these early workers have had to be excluded from such studies, significantly reducing their power. We constructed a population-specific quantitative job exposure matrix (JEM) to estimate the average intakes of "typical plutonium workers" in this period, from 1952-1963, and assessed its validity and sensitivity to exposure assessment decisions. We conducted internal cross-validation using an a priori 10% extracted sample to evaluate reliability of estimates, explored JEM sensitivity to assumptions in the exposure assessment, and assessed the impact of uncertainty in urinalysis measurements on the precision of annual intake estimates using Markov Chain Monte Carlo (MCMC) methodology. Pairwise correlations ( RP) of estimated (JEM) and measured (10% sample) annual intakes were moderate to high ( RP > 0.4) for 10 out of 13 JEM groups, while absolute differences were <20% for 11 out of 13 JEM groups. There was little evidence of a temporal trend in correlations ( P = 0.13) or absolute differences ( P = 0.34). The median JEM-derived cumulative intake of 95.2 (IQR, 55.0-130.0) Bq was comparable to those based on alternative assumptions in the exposure assessment (median range, 95.2-100.0 Bq; 75th percentiles, 130.0-146.0 Bq). Measurement error simulation resulted in a 40-60% reduced median cumulative intake but higher maximum cumulative intakes. The JEM finds a balance between reliability and precision that makes it useful for epidemiological purposes and is relatively insensitive to specific choices in the exposure assessment. This JEM will allow the inclusion of workers with longest follow-up and who could not be included up until now in epidemiological studies without introducing significant bias.


Assuntos
Exposição Ocupacional , Plutônio/efeitos adversos , Exposição Ambiental , Humanos , Cadeias de Markov , Método de Monte Carlo , Plutônio/urina , Monitoramento de Radiação , Reprodutibilidade dos Testes , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA