Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190364, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862811

RESUMO

Over the last few decades, the Barents Sea experienced substantial warming, an expansion of relatively warm Atlantic water and a reduction in sea ice cover. This environmental change forces the entire Barents Sea ecosystem to adapt and restructure and therefore changes in pelagic-benthic coupling, organic matter sedimentation and long-term carbon sequestration are expected. Here we combine new and existing organic and inorganic geochemical surface sediment data from the western Barents Sea and show a clear link between the modern ecosystem structure, sea ice cover and the organic carbon and CaCO3 contents in Barents Sea surface sediments. Furthermore, we discuss the sources of total and reactive iron phases and evaluate the spatial distribution of organic carbon bound to reactive iron. Consistent with a recent global estimate we find that on average 21.0 ± 8.3 per cent of the total organic carbon is associated to reactive iron (fOC-FeR) in Barents Sea surface sediments. The spatial distribution of fOC-FeR, however, seems to be unrelated to sea ice cover, Atlantic water inflow or proximity to land. Future Arctic warming might, therefore, neither increase nor decrease the burial rates of iron-associated organic carbon. However, our results also imply that ongoing sea ice reduction and the associated alteration of vertical carbon fluxes might cause accompanied shifts in the Barents Sea surface sedimentary organic carbon content, which might result in overall reduced carbon sequestration in the future. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Sedimentos Geológicos/química , Camada de Gelo/química , Regiões Árticas , Carbonato de Cálcio/análise , Carbono/análise , Ciclo do Carbono , Ecossistema , Aquecimento Global , Ferro/análise , Noruega , Oceanos e Mares , Compostos Orgânicos/análise
2.
Environ Sci Technol ; 53(21): 12882-12892, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31566362

RESUMO

Soft sediments exhibit complex and varied deformation behavior during in situ bubble growth; however, the sediment microstructure is often neglected when predicting bubble networking or fracture propagation dynamics. This study considers three chemically similar Mg(OH)2-rich sediments, which differ slightly in their particle size distributions and morphologies but exhibit significant differences in their porosity, stiffness, and pore throat dimensions at equivalent yield strengths. At low yield strengths, microstructure greatly influenced the size distribution and connectivity of spherical bubble populations, with narrow sedimentary pore throats promoting coarser bubbles with diminished connectivity. Increased connectivity of the bubble population appeared highly significant in limiting bed expansion, either by establishing pathways for gas release or by dissipating excess internal bubble pressure, thereby diminishing further growth. During in situ gas generation, each sediment demonstrated a critical fracture strength, which demarcated the populations with high void fractions (0.27 < ν < 0.4) of near-spherical bubbles from a fracturing regime supporting reduced void fractions (ν ≈ 0.15) of high aspect ratio cracks. However, critical fracture strengths varied significantly (in the 60-1000 Pa range) between sediments, with coarser-grained and higher porosity sediments promoting fracture at lower strengths. Fracture propagation greatly enhanced the connectivity and diminished the tortuosity of the void networks, thereby augmenting the continuous gas release flux.


Assuntos
Sedimentos Geológicos , Ar , Sedimentos Geológicos/química , Porosidade
3.
Sedimentology ; 66(7): 2749-2768, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31866696

RESUMO

The shape and size of sedimentary bedforms play a key role in the reconstruction of sedimentary processes in modern and ancient environments. Recent laboratory experiments have shown that bedforms in mixed sand-clay develop at a slower rate and often have smaller heights and wavelengths than equivalent bedforms in pure sand. This effect is generally attributed to cohesive forces that can be of physical origin, caused by electrostatic forces of attraction between clay minerals, and of biological origin, caused by 'sticky' extracellular polymeric substances (EPS) produced by micro-organisms, such as microalgae (microphytobenthos) and bacteria. The present study demonstrates, for the first time, that these laboratory experiments are a suitable analogue for current ripples formed by tidal currents on a natural mixed sand-mud-EPS intertidal flat in a macrotidal estuary. Integrated hydrodynamic and bed morphological measurements, collected during a spring tide under weak wave conditions near Hilbre Island (Dee Estuary, north-west England, UK), reveal a statistically significant decrease in current ripple wavelength for progressively higher bed mud and EPS contents, and a concurrent change from three-dimensional linguoid to two-dimensional straight-crested ripple planform morphology. These results agree well with observations in laboratory flumes, but the rate of decrease of ripple wavelength as mud content increased was found to be substantially greater for the field than the laboratory. Since the formation of ripples under natural conditions is inherently more complex than in the laboratory, four additional factors that might affect current ripple development in estuaries, but which were not accounted for in laboratory experiments, were explored. These were current forcing, clay type, pore water salinity and bed EPS content. These data illustrate that clay type alone cannot explain the difference in the rate of decrease in ripple wavelength, because the bed clay contents were too low for clay type to have had a measurable effect on bedform development. Accounting for the difference in current forcing between the field and experiments, and therefore the relative stage of development with respect to equilibrium ripples, increases the difference between the ripple wavelengths. The presence of strongly cohesive EPS in the current ripples on the natural intertidal flat might explain the majority of the difference in the rate of decrease in ripple wavelength between the field and the laboratory. The effect of pore water salinity on the rate of bedform development cannot be quantified at present, but salinity is postulated herein to have had a smaller influence on the ripple wavelength than bed EPS content. The common presence of clay and EPS in many aqueous sedimentary environments implies that a re-assessment of the role of current ripples and their primary current lamination in predicting and reconstructing flow regimes is necessary, and that models that are valid for pure sand are an inappropriate descriptor for more complex mixed sediment. This study proposes that this re-assessment is necessary at all bed clay contents above 3%.

4.
Geophys Res Lett ; 43(4): 1566-1573, 2016 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27011393

RESUMO

Biologically active, fine-grained sediment forms abundant sedimentary deposits on Earth's surface, and mixed mud-sand dominates many coasts, deltas, and estuaries. Our predictions of sediment transport and bed roughness in these environments presently rely on empirically based bed form predictors that are based exclusively on biologically inactive cohesionless silt, sand, and gravel. This approach underpins many paleoenvironmental reconstructions of sedimentary successions, which rely on analysis of cross-stratification and bounding surfaces produced by migrating bed forms. Here we present controlled laboratory experiments that identify and quantify the influence of physical and biological cohesion on equilibrium bed form morphology. The results show the profound influence of biological cohesion on bed form size and identify how cohesive bonding mechanisms in different sediment mixtures govern the relationships. The findings highlight that existing bed form predictors require reformulation for combined biophysical cohesive effects in order to improve morphodynamic model predictions and to enhance the interpretations of these environments in the geological record.

5.
Proc Biol Sci ; 281(1788): 20140703, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24943377

RESUMO

From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms.


Assuntos
Peixes/anatomia & histologia , Peixes/fisiologia , Fósseis/anatomia & histologia , Hidrodinâmica , Natação , Adaptação Fisiológica , Animais , Evolução Biológica
6.
Ind Eng Chem Res ; 62(42): 17328-17342, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37900303

RESUMO

This study investigated the performance of an acoustic backscatter system (ABS) for the in situ particle characterization of complex wastes. Two sediments were used: a fine, milled calcite that was flocculated with anionic polyacrylamide and naturally flocculated pond sludge. Particles were initially measured independently by light-based techniques to gain size, the coefficient of variation (COV), and fractal dimensions. For acoustic experiments, a bespoke, high-fidelity ABS was employed with 1, 2.25, and 5 MHz probes and a recirculating mixing tank. Initially, the concentration independent attenuation and backscatter coefficients were measured for each system using a robust calibration procedure at multiple concentrations. Comparisons of the total scattering cross-section (χ) and form function (f) were made between the experimental data and two semiempirical models: a Solid Scattering model and a Hybrid model (where the effects of bound fluid are incorporated). Experimental data compared more closely to the Solid Scattering model, as it was assumed scattering was dominated by small, bound "flocculi" rather than the macroscopic structure. However, if the COV was used as a fit parameter, the hybrid model could give equally accurate fits for a range of input aggregate sizes, highlighting that important size and structure information can be gained from the acoustic models if there is some a priori system data. Additionally, dual-frequency inversions were undertaken to measure concentration profiles for various frequency pairs. Here, the lowest frequency pair gave the best performance (with accurate measurements in the range of 2-35 g·L-1) as interparticle scattering was lowest.

7.
Bioinspir Biomim ; 16(4)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33784651

RESUMO

We investigate the influence of smooth and ribletted shark skin on a turbulent boundary layer flow. Through laser Doppler anemometry (LDA) the role of riblets in combination with the shark skin denticle is established for the first time. Our results show that smooth denticles behave like a typical rough surface when exposed to an attached boundary layer. Drag is increased for the full range of tested dimensionless denticle widths,w+≈ 25-80, wherew+is the denticle width,w, scaled by the friction velocity,uτ, and the kinematic viscosity,ν. However, when riblets are added to the denticle crown we demonstrate there is a significant reduction in drag, relative to the smooth denticles. We obtain a modest maximum drag reduction of 2% for the ribletted denticles when compared to the flat plate, but when compared to the smooth denticles the difference in drag is in excess of 20% forw+≈ 80. This study enables a new conclusion that riblets have evolved as a mechanism to reduce or eliminate the skin friction increase due to the presence of scales (denticles). The combination of scales and riblets is hydrodynamically efficient in terms of skin-friction drag, while also acting to maintain flow attachment, and providing the other advantages associated with scales, e.g. anti-fouling, abrasion resistance, and defence against parasites.


Assuntos
Calcificações da Polpa Dentária , Tubarões , Animais , Fricção , Hidrodinâmica , Pele
8.
RSC Adv ; 11(30): 18661-18675, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480913

RESUMO

Mg(OH)2 suspensions were floated utilising sodium dodecyl sulphate (SDS) and sodium lauroyl isethionate (SLI) collectors, for rapid dewatering of radwaste suspensions. Freundlich adsorption isotherms were first used to compare the adsorption densities of SDS and SLI on Mg(OH)2 surfaces, to determine the maximum monolayer coverage capacity, and were found to be 0.11 µmol m-2 at a dosed concentration of 172 µM for SDS and 0.05 µmol m-2 at a dosed concentration of 188 µM for SLI. The natural and salt induced coagulation kinetics of Mg(OH)2 were examined using static light scattering, where the influence of collector adsorption on particle size distributions was also investigated, to probe potential hydrodynamic limitations of flotation. Particle stabilised foam formation was then characterised using a Bikerman column test, where the dynamic foamability indices (DFIs) of SDS and SLI were determined to be 49 × 103 s L mol-1 and 321 × 103 s L mol-1 respectively. Flotation performance was measured, and a collection efficiency factor used to compare the solid-liquid separation ability of mixed 2.5 vol% suspensions with SDS or SLI, as well as MIBC frother. Optimal performance aligned with collector concentrations relating to predicted maximum monolayer coverage, and whilst both surfactants were effective, SDS systems performed better than SLI in all metrics. Recoveries of >80% of the Mg(OH)2 wastes were achieved, whilst only transferring 35% of the water mass at the optimum SDS dosed concentration of 82 µM, likely due to its denser surface adsorption and minimised lamella water entrainment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA