Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
EMBO Rep ; 22(11): e53732, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34494703

RESUMO

Neuronal communication is typically mediated via synapses and gap junctions. New forms of intercellular communication, including nanotubes (NTs) and extracellular vesicles (EVs), have been described for non-neuronal cells, but their role in neuronal communication is not known. Recently, transfer of cytoplasmic material between donor and host neurons ("material transfer") was shown to occur after photoreceptor transplantation. The cellular mechanism(s) underlying this surprising finding are unknown. Here, using transplantation, primary neuronal cultures and the generation of chimeric retinae, we show for the first time that mammalian photoreceptor neurons can form open-end NT-like processes. These processes permit the transfer of cytoplasmic and membrane-bound molecules in culture and after transplantation and can mediate gain-of-function in the acceptor cells. Rarely, organelles were also observed to transfer. Strikingly, use of chimeric retinae revealed that material transfer can occur between photoreceptors in the intact adult retina. Conversely, while photoreceptors are capable of releasing EVs, at least in culture, these are taken up by glia and not by retinal neurons. Our findings provide the first evidence of functional NT-like processes forming between sensory neurons in culture and in vivo.


Assuntos
Vesículas Extracelulares , Nanotubos , Animais , Comunicação Celular , Mamíferos , Neurônios , Retina
2.
Glia ; 69(9): 2272-2290, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029407

RESUMO

Gliosis is a complex process comprising upregulation of intermediate filament (IF) proteins, particularly glial fibrillary acidic protein (GFAP) and vimentin, changes in glial cell morphology (hypertrophy) and increased deposition of inhibitory extracellular matrix molecules. Gliosis is common to numerous pathologies and can have deleterious effects on tissue function and regeneration. The role of IFs in gliosis is controversial, but a key hypothesized function is the stabilization of glial cell hypertrophy. Here, we developed RNAi approaches to examine the role of GFAP and vimentin in vivo in a murine model of inherited retinal degeneration, the Rhodopsin knockout (Rho-/- ) mouse. Specifically, we sought to examine the role of these IFs in the establishment of Müller glial hypertrophy during progressive degeneration, as opposed to (more commonly assessed) acute injury. Prevention of Gfap upregulation had a significant effect on the morphology of reactive Müller glia cells in vivo and, more strikingly, the reduction of Vimentin expression almost completely prevented these cells from undergoing degeneration-associated hypertrophy. Moreover, and in contrast to studies in knockout mice, simultaneous suppression of both GFAP and vimentin expression led to severe changes in the cytoarchitecture of the retina, in both diseased and wild-type eyes. These data demonstrate a crucial role for Vimentin, as well as GFAP, in the establishment of glial hypertrophy and support the further exploration of RNAi-mediated knockdown of vimentin as a potential therapeutic approach for modulating scar formation in the degenerating retina.


Assuntos
Células Ependimogliais , Proteína Glial Fibrilar Ácida , Degeneração Retiniana , Vimentina , Animais , Células Ependimogliais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patologia , Filamentos Intermediários/metabolismo , Camundongos , Neuroglia/metabolismo , Interferência de RNA , Retina/metabolismo , Degeneração Retiniana/patologia , Vimentina/metabolismo
3.
J Clin Pharm Ther ; 45(6): 1457-1465, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32662547

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Pharmacogenomic biomarkers are now used in many clinical care settings and represent one of the successes of precision medicine. Genetic variants are associated with pharmacokinetic and pharmacodynamic changes leading to medication adverse effects and changes in clinical response. Actionable pharmacogenomic variants are common in transplant recipients and have implications for medications used in transplant, but yet are not broadly incorporated into practice. METHODS: From the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group guidelines, and PharmGKB databases, 12 pharmacogenomic genes with 30 variants were selected and used to create diplotypes and actionable pharmacogenomic phenotypes. A total of 853 kidney allograft recipients who had genomic information available from a genome-wide association study were included. RESULTS: Each recipient had at least one actionable pharmacogenomic diplotype/phenotype, whereas the majority (58%) had three or four actionable diplotypes/phenotypes and 17.4% had five or more among the 12 genes. The participants carried actionable diplotypes/phenotypes for multiple medications, including tacrolimus, azathioprine, clopidogrel, warfarin, simvastatin, voriconazole, antidepressants and proton-pump inhibitors. WHAT IS NEW AND CONCLUSION: Pharmacogenomic variants are common in transplant recipients, and transplant recipients receive medications that have actionable variants. CLINICAL TRIAL: Genomics of Transplantation, clinicaltrials.gov (NCT01714440).


Assuntos
Transplante de Rim/métodos , Farmacogenética/métodos , Variantes Farmacogenômicos , Adulto , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos
4.
Hum Mol Genet ; 26(2): 305-319, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28065882

RESUMO

Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic 'gain of function', such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Metformina/administração & dosagem , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Rodopsina/genética , Proteínas Quinases Ativadas por AMP/biossíntese , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Mutantes/genética , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/patologia , Dobramento de Proteína/efeitos dos fármacos , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia , Ratos , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/patologia , Rodopsina/química , Segmento Externo da Célula Bastonete/efeitos dos fármacos , Segmento Externo da Célula Bastonete/patologia , Ativação Transcricional/efeitos dos fármacos
5.
Mol Ther ; 26(5): 1343-1353, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29606505

RESUMO

The neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage disorders characterized by general neurodegeneration and premature death. Sight loss is also a major symptom in NCLs, severely affecting the quality of life of patients, but it is not targeted effectively by brain-directed therapies. Here we set out to explore the therapeutic potential of an ocular gene therapy to treat sight loss in NCL due to a deficiency in the transmembrane protein CLN6. We found that, although Cln6nclf mice presented mainly with photoreceptor degeneration, supplementation of CLN6 in photoreceptors was not beneficial. Because the level of CLN6 is low in photoreceptors but high in bipolar cells (retinal interneurons that are only lost in Cln6-deficient mice at late disease stages), we explored the therapeutic effects of delivering CLN6 to bipolar cells using adeno-associated virus (AAV) serotype 7m8. Bipolar cell-specific expression of CLN6 slowed significantly the loss of photoreceptor function and photoreceptor cells. This study shows that the deficiency of a gene normally expressed in bipolar cells can cause the loss of photoreceptors and that this can be prevented by bipolar cell-directed treatment.


Assuntos
Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Células Fotorreceptoras/metabolismo , Células Bipolares da Retina/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Lipofuscinoses Ceroides Neuronais/terapia , Células Fotorreceptoras/patologia
6.
Adv Exp Med Biol ; 1074: 303-308, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721957

RESUMO

Within the mammalian retina, both Müller glia and astrocytes display reactivity in response to many forms of retinal injury and disease in a process termed gliosis. Reactive gliosis is a complex process that is considered to represent a cellular response to protect the retina from further damage and to promote its repair following pathological insult. It includes morphological, biochemical and physiological changes, which may vary depending on the type and degree of the initial injury. Not only does gliosis have numerous triggers, but also there is a great degree of heterogeneity in the glial response, creating multiple levels of complexity. For these reasons, understanding the process of glial scar formation and how this process differs in different pathological conditions and finding strategies to circumvent these barriers represent major challenges to the advancement of many ocular therapies.


Assuntos
Células Ependimogliais/fisiologia , Gliose/patologia , Doenças Retinianas/patologia , Animais , Astrócitos/fisiologia , Cicatriz/patologia , Citocinas/metabolismo , Gliose/complicações , Gliose/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Células Fotorreceptoras de Vertebrados/transplante , Retina/lesões , Retina/metabolismo , Retina/patologia , Descolamento Retiniano/etiologia , Descolamento Retiniano/prevenção & controle , Doenças Retinianas/metabolismo , Especificidade da Espécie , Vertebrados/fisiologia
7.
Stem Cells ; 33(8): 2469-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25982268

RESUMO

Loss of photoreceptors due to retinal degeneration is a major cause of untreatable blindness. Cell replacement therapy, using pluripotent stem cell-derived photoreceptor cells, may be a feasible future treatment. Achieving safe and effective cell replacement is critically dependent on the stringent selection and purification of optimal cells for transplantation. Previously, we demonstrated effective transplantation of post-mitotic photoreceptor precursor cells labelled by fluorescent reporter genes. As genetically labelled cells are not desirable for therapy, here we developed a surface biomarker cell selection strategy for application to complex pluripotent stem cell differentiation cultures. We show that a five cell surface biomarker panel CD73(+)CD24(+)CD133(+)CD47(+)CD15(-) facilitates the isolation of photoreceptor precursors from three-dimensional self-forming retina differentiated from mouse embryonic stem cells. Importantly, stem cell-derived cells isolated using the biomarker panel successfully integrate and mature into new rod photoreceptors in the adult mouse retinae after subretinal transplantation. Conversely, unsorted or negatively selected cells do not give rise to newly integrated rods after transplantation. The biomarker panel also removes detrimental proliferating cells prior to transplantation. Notably, we demonstrate how expression of the biomarker panel is conserved in the human retina and propose that a similar selection strategy will facilitate isolation of human transplantation-competent cells for therapeutic application.


Assuntos
Antígenos de Diferenciação/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Degeneração Retiniana/terapia , Células Fotorreceptoras Retinianas Bastonetes , Transplante de Células-Tronco , Animais , Humanos , Camundongos , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/transplante
8.
Adv Exp Med Biol ; 854: 579-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427462

RESUMO

Retinal degenerations leading to the loss of photoreceptor (PR) cells are a major cause of vision impairment and untreatable blindness. There are few clinical treatments and none can reverse the loss of vision. With the rapid advances in stem cell biology and techniques in cell transplantation, PR replacement by transplantation represents a broad treatment strategy applicable to many types of degeneration. The number of donor cells that integrate into the recipient retina determines transplantation success, yet the degenerating retinae presents a number of barriers that can impede effective integration. Here, we briefly review recent advances in the field of PR transplantation. We then describe how different aspects of gliosis may impact on cell integration efficiency.


Assuntos
Gliose/fisiopatologia , Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/fisiopatologia , Degeneração Retiniana/terapia , Animais , Transplante de Células/métodos , Transplante de Células/tendências , Humanos , Células Fotorreceptoras de Vertebrados/citologia
9.
Proc Natl Acad Sci U S A ; 110(1): 354-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248312

RESUMO

Despite different aetiologies, age-related macular degeneration and most inherited retinal disorders culminate in the same final common pathway, the loss of photoreceptors. There are few treatments and none reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. Recently, we demonstrated restoration of vision following rod-photoreceptor transplantation into a mouse model of stationary night-blindness, raising the critical question of whether photoreceptor replacement is equally effective in different types and stages of degeneration. We present a comprehensive assessment of rod-photoreceptor transplantation across six murine models of inherited photoreceptor degeneration. Transplantation is feasible in all models examined but disease type has a major impact on outcome, as assessed both by the morphology and number of integrated rod-photoreceptors. Integration can increase (Prph2(+/Δ307)), decrease (Crb1(rd8/rd8), Gnat1(-/-), Rho(-/-)), or remain constant (PDE6ß(rd1/rd1), Prph2(rd2/rd2)) with disease progression, depending upon the gene defect, with no correlation with severity. Robust integration is possible even in late-stage disease. Glial scarring and outer limiting membrane integrity, features that change with degeneration, significantly affect transplanted photoreceptor integration. Combined breakdown of these barriers markedly increases integration in a model with an intact outer limiting membrane, strong gliotic response, and otherwise poor transplantation outcome (Rho(-/-)), leading to an eightfold increase in integration and restoration of visual function. Thus, it is possible to achieve robust integration across a broad range of inherited retinopathies. Moreover, transplantation outcome can be improved by administering appropriate, tailored manipulations of the recipient environment.


Assuntos
Cegueira Noturna/cirurgia , Atrofia Óptica Hereditária de Leber/cirurgia , Células Fotorreceptoras Retinianas Bastonetes/transplante , Retinose Pigmentar/cirurgia , Animais , Western Blotting , Contagem de Células , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Citometria de Fluxo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/metabolismo , Cegueira Noturna/genética , Atrofia Óptica Hereditária de Leber/genética , Periferinas , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Retinose Pigmentar/genética , Transducina/genética , Transducina/metabolismo , Resultado do Tratamento , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
10.
Vis Neurosci ; 31(4-5): 333-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24945529

RESUMO

Vision loss caused by the death of photoreceptors is the leading cause of irreversible blindness in the developed world. Rapid advances in stem cell biology and techniques in cell transplantation have made photoreceptor replacement by transplantation a very plausible therapeutic strategy. These advances include the demonstration of restoration of vision following photoreceptor transplantation and the generation of transplantable populations of donor cells from stem cells. In this review, we present a brief overview of the recent progress in photoreceptor transplantation. We then consider in more detail some of the challenges presented by the degenerating retinal environment that must play host to these transplanted cells, how these may influence transplanted photoreceptor cell integration and survival, and some of the progress in developing strategies to circumnavigate these issues.


Assuntos
Células Fotorreceptoras/fisiologia , Células Fotorreceptoras/transplante , Retina/transplante , Transtornos da Visão/cirurgia , Animais , Humanos
11.
STAR Protoc ; 5(1): 102875, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38386547

RESUMO

Here, we present a protocol for isolating and culturing mouse photoreceptors in a minimal, chemically defined medium free from serum. We describe steps for retina dissection, enzymatic dissociation, photoreceptor enrichment, cell culture, extracellular vesicles (EVs) enrichment, and EV ultrastructural analysis. This protocol, which has been verified for cultured cells derived from multiple murine strains, allows for the study of several aspects of photoreceptor biology, including EV isolation and nanotube formation. For complete details on the use and execution of this protocol, please refer to Kalargyrou et al. (2021).1.


Assuntos
Vesículas Extracelulares , Retina , Animais , Camundongos , Técnicas de Cultura de Células , Dissecação
12.
Hum Mol Genet ; 20(16): 3161-75, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21576125

RESUMO

Mutations in the CNGB3 gene account for >50% of all known cases of achromatopsia. Although of early onset, its stationary character and the potential for rapid assessment of restoration of retinal function following therapy renders achromatopsia a very attractive candidate for gene therapy. Here we tested the efficacy of an rAAV2/8 vector containing a human cone arrestin promoter and a human CNGB3 cDNA in CNGB3 deficient mice. Following subretinal delivery of the vector, CNGB3 was detected in both M- and S-cones and resulted in increased levels of CNGA3, increased cone density and survival, improved cone outer segment structure and normal subcellular compartmentalization of cone opsins. Therapy also resulted in long-term improvement of retinal function, with restoration of cone ERG amplitudes of up to 90% of wild-type and a significant improvement in visual acuity. Remarkably, successful restoration of cone function was observed even when treatment was initiated at 6 months of age; however, restoration of normal visual acuity was only possible in younger animals (e.g. 2-4 weeks old). This study represents achievement of the most substantial restoration of visual function reported to date in an animal model of achromatopsia using a human gene construct, which has the potential to be utilized in clinical trials.


Assuntos
Envelhecimento/patologia , Defeitos da Visão Cromática/fisiopatologia , Defeitos da Visão Cromática/terapia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/uso terapêutico , Terapia Genética , Visão Ocular/fisiologia , Animais , Arrestinas/genética , Sobrevivência Celular , Defeitos da Visão Cromática/patologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Humanos , Injeções , Camundongos , Camundongos Transgênicos , Opsinas/metabolismo , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Transporte Proteico , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Fatores de Tempo , Acuidade Visual/fisiologia
13.
Stem Cells ; 30(7): 1424-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22570183

RESUMO

Retinal degeneration is a leading cause of irreversible blindness in the developed world. Differentiation of retinal cells, including photoreceptors, from both mouse and human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), potentially provide a renewable source of cells for retinal transplantation. Previously, we have shown both the functional integration of transplanted rod photoreceptor precursors, isolated from the postnatal retina, in the adult murine retina, and photoreceptor cell generation by stepwise treatment of ESCs with defined factors. In this study, we assessed the extent to which this protocol recapitulates retinal development and also evaluated differentiation and integration of ESC-derived retinal cells following transplantation using our established procedures. Optimized retinal differentiation via isolation of Rax.GFP retinal progenitors recreated a retinal niche and increased the yield of Crx(+) and Rhodopsin(+) photoreceptors. Rod birth peaked at day 20 of culture and expression of the early photoreceptor markers Crx and Nrl increased until day 28. Nrl levels were low in ESC-derived populations compared with developing retinae. Transplantation of early stage retinal cultures produced large tumors, which were avoided by prolonged retinal differentiation (up to day 28) prior to transplantation. Integrated mature photoreceptors were not observed in the adult retina, even when more than 60% of transplanted ESC-derived cells expressed Crx. We conclude that exclusion of proliferative cells from ESC-derived cultures is essential for effective transplantation. Despite showing expression profiles characteristic of immature photoreceptors, the ESC-derived precursors generated using this protocol did not display transplantation competence equivalent to precursors from the postnatal retina.


Assuntos
Células-Tronco Embrionárias/citologia , Células Fotorreceptoras/citologia , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Células Fotorreceptoras/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Retina/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante de Células-Tronco
14.
J Clin Pharmacol ; 63(2): 151-165, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36088583

RESUMO

Combination therapies have become increasingly researched and used in the treatment and management of complex diseases due to their ability to increase the chances for better efficacy and decreased toxicity. To evaluate drug combinations in drug development, pharmacokinetic and pharmacodynamic interactions between drugs in combination can be quantified using mathematical models; however, it can be difficult to deduce which models to use and how to use them to aid in clinical trial simulations to simulate the effect of a drug combination. This review paper aims to provide an overview of the various methods used to evaluate combination drug interaction for use in clinical trial development and a practical guideline on how combination modeling can be used in the settings of clinical trials.


Assuntos
Desenvolvimento de Medicamentos , Modelos Teóricos , Humanos , Interações Medicamentosas , Combinação de Medicamentos , Desenho de Fármacos , Quimioterapia Combinada
15.
Front Mol Neurosci ; 15: 1042469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710933

RESUMO

The retina encompasses a network of neurons, glia and epithelial and vascular endothelia cells, all coordinating visual function. Traditionally, molecular information exchange in this tissue was thought to be orchestrated by synapses and gap junctions. Recent findings have revealed that many cell types are able to package and share molecular information via extracellular vesicles (EVs) and the technological advancements in visualisation and tracking of these delicate nanostructures has shown that the role of EVs in cell communication is pleiotropic. EVs are released under physiological conditions by many cells but they are also released during various disease stages, potentially reflecting the health status of the cells in their cargo. Little is known about the physiological role of EV release in the retina. However, administration of exogenous EVs in vivo after injury suggest a neurotrophic role, whilst photoreceptor transplantation in early stages of retina degeneration, EVs may facilitate interactions between photoreceptors and Müller glia cells. In this review, we consider some of the proposed roles for EVs in retinal physiology and discuss current evidence regarding their potential impact on ocular therapies via gene or cell replacement strategies and direct intraocular administration in the diseased eye.

16.
Stem Cells ; 28(6): 1048-59, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20506130

RESUMO

The ciliary margin in lower vertebrates is a site of continual retinal neurogenesis and a stem cell niche. By contrast, the human eye ceases retinal neuron production before birth and loss of photoreceptors during life is permanent and a major cause of blindness. The discovery of a proliferative cell population in the ciliary epithelium (CE) of the adult mammalian eye, designated retinal stem cells, raised the possibility that these cells could help to restore sight by replacing lost photoreceptors. We previously demonstrated the feasibility of photoreceptor transplantation using cells from the developing retina. CE cells could provide a renewable source of photoreceptors for transplantation. Several laboratories reported that these cells generate new photoreceptors, whereas a recent report questioned the existence of retinal stem cells. We used Nrl.gfp transgenic mice that express green fluorescent protein in rod photoreceptors to assess definitively the ability of CE cells to generate new photoreceptors. We report that CE cells expanded in monolayer cultures, lose pigmentation, and express a subset of eye field and retinal progenitor cell markers. Simultaneously, they continue to express some markers characteristic of differentiated CE and typically lack a neuronal morphology. Previously reported photoreceptor differentiation conditions used for CE cells, as well as conditions used to differentiate embryonic retinal progenitor cells (RPCs) and embryonic stem cell-derived RPCs, do not effectively activate the Nrl-regulated photoreceptor differentiation program. Therefore, we conclude that CE cells lack potential for photoreceptor differentiation and would require reprogramming to be useful as a source of new photoreceptors.


Assuntos
Células-Tronco Adultas/citologia , Retina/citologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células-Tronco Adultas/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
17.
Stem Cells ; 28(11): 1997-2007, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20857496

RESUMO

Stem cell therapy presents an opportunity to replace photoreceptors that are lost as a result of inherited and age-related degenerative disease. We have previously shown that murine postmitotic rod photoreceptor precursor cells, identified by expression of the rod-specific transcription factor Nrl, are able to migrate into and integrate within the adult murine neural retina. However, their long-term survival has yet to be determined. Here, we found that integrated Nrl.gfp(+ve) photoreceptors were present up to 12 months post-transplantation, albeit in significantly reduced numbers. Surviving cells had rod-like morphology, including inner/outer segments and spherule synapses. In a minority of eyes, we observed an early, marked reduction in integrated photoreceptors within 1 month post-transplantation, which correlated with increased numbers of amoeboid macrophages, indicating acute loss of transplanted cells due to an inflammatory response. In the majority of transplants, similar numbers of integrated cells were observed between 1 and 2 months post-transplantation. By 4 months, however, we observed a significant decrease in integrated cell survival. Macrophages and T cells were present around the transplantation site, indicating a chronic immune response. Immune suppression of recipients significantly increased transplanted photoreceptor survival, indicating that the loss observed in unsuppressed recipients resulted from T cell-mediated host immune responses. Thus, if immune responses are modulated, correctly integrated transplanted photoreceptors can survive for extended periods of time in hosts with partially mismatched H-2 haplotypes. These findings suggest that autologous donor cells are optimal for therapeutic approaches to repair the neural retina, though with immune suppression nonautologous donors may be effective.


Assuntos
Células Fotorreceptoras/citologia , Retina/citologia , Transplante de Células-Tronco/métodos , Animais , Sobrevivência Celular/imunologia , Células Cultivadas , Ciclosporina/uso terapêutico , Citometria de Fluxo , Imuno-Histoquímica , Imunossupressores/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Células Fotorreceptoras/imunologia , Células Fotorreceptoras/metabolismo , Retina/efeitos dos fármacos , Retina/imunologia , Retina/metabolismo , Linfócitos T/imunologia , Fatores de Tempo
18.
STAR Protoc ; 2(4): 101008, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34917982

RESUMO

The developing retina undergoes dynamic organizational changes involving significant intra-retinal motility of the encompassing cells. Here, we present a protocol for tracking retinal cell motility in live explanted mouse retinae. Although originally applied to rod and cone photoreceptors, this strategy is applicable to any fluorescently labeled cell in mouse retinae and other similar experimental retinal models. Careful tissue handling is critical for the successful acquisition of high-quality live imaging data. Further instructions for semi-automated in silico data handling are provided. For complete details on the use and execution of this protocol, please refer to Aghaizu et al. (2021).


Assuntos
Movimento Celular/fisiologia , Rastreamento de Células/métodos , Retina , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Animais , Feminino , Proteínas Luminescentes , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Retina/citologia , Retina/diagnóstico por imagem , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Imagem com Lapso de Tempo
19.
Cell Rep ; 36(5): 109461, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348137

RESUMO

In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination.


Assuntos
Núcleo Celular/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Actomiosina/metabolismo , Animais , Dineínas/metabolismo , Cinética , Camundongos Transgênicos , Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Neurogênese , Polimerização , Transporte Proteico , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo
20.
Cell Rep ; 35(3): 109022, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882303

RESUMO

Age-related macular degeneration and other macular diseases result in the loss of light-sensing cone photoreceptors, causing irreversible sight impairment. Photoreceptor replacement may restore vision by transplanting healthy cells, which must form new synaptic connections with the recipient retina. Despite recent advances, convincing evidence of functional connectivity arising from transplanted human cone photoreceptors in advanced retinal degeneration is lacking. Here, we show restoration of visual function after transplantation of purified human pluripotent stem cell-derived cones into a mouse model of advanced degeneration. Transplanted human cones elaborate nascent outer segments and make putative synapses with recipient murine bipolar cells (BCs), which themselves undergo significant remodeling. Electrophysiological and behavioral assessments demonstrate restoration of surprisingly complex light-evoked retinal ganglion cell responses and improved light-evoked behaviors in treated animals. Stringent controls exclude alternative explanations, including material transfer and neuroprotection. These data provide crucial validation for photoreceptor replacement therapy and for the potential to rescue cone-mediated vision.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/terapia , Organoides/transplante , Recuperação de Função Fisiológica/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Transgênicos , Micotoxinas/genética , Micotoxinas/metabolismo , Organoides/citologia , Organoides/metabolismo , Periferinas/genética , Periferinas/metabolismo , Estimulação Luminosa , Cultura Primária de Células , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo , Transplante Heterólogo , Visão Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA