RESUMO
Counterdrug interdiction efforts designed to seize or disrupt cocaine shipments between South American source zones and US markets remain a core US "supply side" drug policy and national security strategy. However, despite a long history of US-led interdiction efforts in the Western Hemisphere, cocaine movements to the United States through Central America, or "narco-trafficking," continue to rise. Here, we developed a spatially explicit agent-based model (ABM), called "NarcoLogic," of narco-trafficker operational decision making in response to interdiction forces to investigate the root causes of interdiction ineffectiveness across space and time. The central premise tested was that spatial proliferation and resiliency of narco-trafficking are not a consequence of ineffective interdiction, but rather part and natural consequence of interdiction itself. Model development relied on multiple theoretical perspectives, empirical studies, media reports, and the authors' own years of field research in the region. Parameterization and validation used the best available, authoritative data source for illicit cocaine flows. Despite inherently biased, unreliable, and/or incomplete data of a clandestine phenomenon, the model compellingly reproduced the "cat-and-mouse" dynamic between narco-traffickers and interdiction forces others have qualitatively described. The model produced qualitatively accurate and quantitatively realistic spatial and temporal patterns of cocaine trafficking in response to interdiction events. The NarcoLogic model offers a much-needed, evidence-based tool for the robust assessment of different drug policy scenarios, and their likely impact on trafficker behavior and the many collateral damages associated with the militarized war on drugs.
RESUMO
When new land is created, initial microbial colonization lays the foundation for further ecological succession of plant and animal communities. Primary microbial succession of new aquatic habitats formed during volcanic activity has received little attention. The anchialine ecosystem, which includes coastal ponds in young lava flows, offers an opportunity to examine this process. Here, we characterized microbial communities of anchialine habitats in Hawaii that were created during volcanic eruptions in 2018. Benthic samples from three habitats were collected â¼2 years after their formation and at later time points spanning â¼1 year. Sequence profiling (16S and 18S) of prokaryotic and eukaryotic communities was used to test whether communities were similar to those from older, established anchialine habitats, and if community structure changed over time. Results show that microbial communities from the new habitats were unlike any from established anchialine microbial communities, having higher proportions of Planctomycetota and Chloroflexi but lower proportions of green algae. Each new habitat also harbored its own unique community relative to other habitats. While community composition in each habitat underwent statistically significant changes over time, they remained distinctive from established anchialine habitats. New habitats also had highly elevated temperatures compared to other habitats. These results suggest that idiosyncratic microbial consortia form during early succession of Hawaiian anchialine habitats. Future monitoring will reveal whether the early communities described here remain stable after temperatures decline and macro-organisms become more abundant, or if microbial communities will continue to change and eventually resemble those of established habitats. This work is a key first step in examining primary volcanic succession in aquatic habitats and suggests young anchialine habitats may warrant special conservation status.
Assuntos
Ecossistema , Microbiota , Animais , Havaí , PlantasRESUMO
BACKGROUND: A strain of Fusarium oxysporum fungus is killing coca plants in the Chapare coca growing region of Bolivia. Coca farmers are already constrained in the amount of coca they can grow under the government's community-based coca control approach, "social control." Coca leaf is the main ingredient in cocaine, but it is also a traditional medicine and food, is economically vital to household incomes, and is a political symbol of the current government administration. Bolivia's approach to coca control, now administered without any United States military intervention, is an innovative example of experimentation with drug policy reform. METHODS: This paper is based on ethnographic research including semi-structured interviews and observation. RESULTS: Coca growers are worried about the dire economic, social, and political consequences of the fungus' appearance and spread since summer 2013. They have two explanations for its origins: First, that it was sent by the United States government, which in the past was developing a strain of F. oxysporum for use in the drug war; Second, and the explanation of scientists, is that the outbreak is caused by the overuse of agrochemicals and other intensive agricultural practices. CONCLUSION: More than a matter of agroecology, the practices identified in the second explanation must be understood in terms of the persistence of the international drug prohibition regime. Bolivia's social control approach is a successful alternative to violent eradication measures, however the country is constrained to uphold the fundamental principles of supply-side control in order to be a respected partner in global drug control. The supply-side logics restricting social control make intensive agriculture practices attractive, but may have contributed to the fungus' proliferation and its continued spread. The fungus draws attention to the challenges of policy reform, new collateral damages of drug control, and role environmental factors can play in drug control politics.