Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biochem J ; 478(2): 443-461, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33512446

RESUMO

Steroid receptors (SRs) encompass a family of transcription factors that regulate the expression of thousands of genes upon binding to steroid hormones and include the glucocorticoid, androgen, progesterone, estrogen and mineralocorticoid receptors. SRs control key physiological and pathological processes, thus becoming relevant drug targets. As with many other nuclear proteins, hormone-activated SRs concentrate in multiple discrete foci within the cell nucleus. Even though these foci were first observed ∼25 years ago, their exact structure and function remained elusive. In the last years, new imaging methodologies and theoretical frameworks improved our understanding of the intranuclear organization. These studies led to a new paradigm stating that many membraneless nuclear compartments, including transcription-related foci, form through a liquid-liquid phase separation process. These exciting ideas impacted the SR field by raising the hypothesis of SR foci as liquid condensates involved in transcriptional regulation. In this work, we review the current knowledge about SR foci formation under the light of the condensate model, analyzing how these structures may impact SR function. These new ideas, combined with state-of-the-art techniques, may shed light on the biophysical mechanisms governing the formation of SR foci and the biological function of these structures in normal physiology and disease.


Assuntos
Núcleo Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Animais , Núcleo Celular/genética , Humanos , Receptores de Esteroides/química , Transcrição Gênica
2.
Nucleic Acids Res ; 47(20): 10645-10661, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31598691

RESUMO

The glucocorticoid and progesterone receptors (GR and PR) are closely related members of the steroid receptor family. Despite sharing similar structural and functional characteristics; the cognate hormones display very distinct physiological responses. In mammary epithelial cells, PR activation is associated with the incidence and progression of breast cancer, whereas the GR is related to growth suppression and differentiation. Despite their pharmacological relevance, only a few studies have compared GR and PR activities in the same system. Using a PR+/GR+ breast cancer cell line, here we report that either glucocorticoid-free or dexamethasone (DEX)-activated GR inhibits progestin-dependent gene expression associated to epithelial-mesenchymal-transition and cell proliferation. When both receptors are activated with their cognate hormones, PR and GR can form part of the same complex according to co-immunoprecipitation, quantitative microscopy and sequential ChIP experiments. Moreover, genome-wide studies in cells treated with either DEX or R5020, revealed the presence of several regions co-bound by both receptors. Surprisingly, GR also binds novel genomic sites in cells treated with R5020 alone. This progestin-induced GR binding was enriched in REL DNA motifs and located close to genes coding for chromatin remodelers. Understanding GR behavior in the context of progestin-dependent breast cancer could provide new targets for tumor therapy.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/metabolismo , Sequência de Bases , Sítios de Ligação , Neoplasias da Mama/patologia , Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cromatina/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Progestinas/farmacologia , Promegestona/farmacologia , Ligação Proteica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
3.
BMC Biol ; 18(1): 59, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487073

RESUMO

BACKGROUND: Functional compartmentalization has emerged as an important factor modulating the kinetics and specificity of biochemical reactions in the nucleus, including those involved in transcriptional regulation. The glucocorticoid receptor (GR) is a ligand-activated transcription factor that translocates to the nucleus upon hormone stimulation and distributes between the nucleoplasm and membraneless compartments named nuclear foci. While a liquid-liquid phase separation process has been recently proposed to drive the formation of many nuclear compartments, the mechanisms governing the heterogeneous organization of GR in the nucleus and the functional relevance of foci formation remain elusive. RESULTS: We dissected some of the molecular interactions involved in the formation of GR condensates and analyzed the GR structural determinants relevant to this process. We show that GR foci present properties consistent with those expected for biomolecular condensates formed by a liquid-liquid phase separation process in living human cells. Their formation requires an initial interaction of GR with certain chromatin regions at specific locations within the nucleus. Surprisingly, the intrinsically disordered region of GR is not essential for condensate formation, in contrast to many nuclear proteins that require disordered regions to phase separate, while the ligand-binding domain seems essential for that process. We finally show that GR condensates include Mediator, a protein complex involved in transcription regulation. CONCLUSIONS: We show that GR foci have properties of liquid condensates and propose that active GR molecules interact with chromatin and recruit multivalent cofactors whose interactions with additional molecules lead to the formation of a focus. The biological relevance of the interactions occurring in GR condensates supports their involvement in transcription regulation.


Assuntos
Receptores de Glucocorticoides/genética , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Humanos , Camundongos , Domínios Proteicos , Receptores de Glucocorticoides/metabolismo
4.
J Chem Inf Model ; 60(2): 794-804, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31689103

RESUMO

The glucocorticoid receptor (GR) is a ligand-binding dependent transcription factor that ultimately regulates vital biological processes and inflammation response through specific gene expression control, thus representing a notable drug target to explore. Structurally, its ligand binding domain (LBD) harbors the region for the ligand-dependent transcriptional activation function 2 (AF-2), a majorly hydrophobic groove formed by residues from helices H3, H4, and H12, where the H12 position plays a critical role in AF-2 spatial conformation and GR function as a whole. However, the exact mechanisms underlying how regulatory ligands control the H12 structure and dynamics are yet to be elucidated. In this work, we have explored the correlation between ligand identity and GR LBD H12 behavior through different molecular dynamics (MD) simulations. After building diverse GR LBD systems in agonist and nonagonist states, we studied each system's response in the absence or the presence of an agonist ligand (dexamethasone) or an antagonist ligand (RU486) using classical MD simulations. We complemented them with steered MD for assessing the transition between those states and with the Umbrella Sampling method for free-energy evaluation. On the one hand, successfully obtaining fully folded nonagonist GR LBD states from the partially unfolded crystal GR LBD/RU486 underlines the role of the H1 in the GR LBD folding pathway. On the other hand, our results describe the H12 as a dynamic ensemble of conformations whose relative population is in the end determined by the interacting ligand: while dexamethasone privileges only a few poses (determined by a potential energy surface with a deep minimum), RU486 favors a wider H12 conformational amplitude, as indicated by a flatter potential landscape. By characterizing the H12 conformation in different conditions, we provide novel GR LBD models that represent potential targets for rational glucocorticoid drugs design, with the aim of accurately modulating GR activity.


Assuntos
Simulação de Dinâmica Molecular , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Ligantes , Domínios Proteicos , Termodinâmica
5.
Am J Physiol Endocrinol Metab ; 316(6): E1136-E1145, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964702

RESUMO

Liver X receptors (LXRs) are ligand-dependent transcription factors activated by cholesterol metabolites. These receptors induce a suite of target genes required for de novo synthesis of triglycerides and cholesterol transport in many tissues. Two different isoforms, LXRα and LXRß, have been well characterized in liver, adipocytes, macrophages, and intestinal epithelium among others, but their contribution to cholesterol and fatty acid efflux in the lactating mammary epithelium is poorly understood. We hypothesize that LXR regulates lipogenesis during milk fat production in lactation. Global mRNA analysis of mouse mammary epithelial cells (MECs) revealed multiple LXR/RXR targets upregulated sharply early in lactation compared with midpregnancy. LXRα is the primary isoform, and its protein levels increase throughout lactation in MECs. The LXR agonist GW3965 markedly induced several genes involved in cholesterol transport and lipogenesis and enhanced cytoplasmic lipid droplet accumulation in the HC11 MEC cell line. Importantly, in vivo pharmacological activation of LXR increased the milk cholesterol percentage and induced sterol regulatory element-binding protein 1c (Srebp1c) and ATP-binding cassette transporter a7 (Abca7) expression in MECs. Cumulatively, our findings identify LXRα as an important regulator of cholesterol incorporation into the milk through key nodes of de novo lipogenesis, suggesting a potential therapeutic target in women with difficulty initiating lactation.


Assuntos
Colesterol/metabolismo , Epitélio/metabolismo , Lactação/genética , Receptores X do Fígado/genética , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Lactação/metabolismo , Lipogênese/genética , Receptores X do Fígado/metabolismo , Camundongos , RNA Mensageiro/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
6.
Methods ; 140-141: 10-22, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253641

RESUMO

The hierarchical organization of the cell nucleus into specialized open reservoirs and the nucleoplasm overcrowding impose restrictions to the mobility of biomolecules and their interactions with nuclear targets. These properties determine that many nuclear functions such as transcription, replication, splicing or DNA repair are regulated by complex, dynamical processes that do not follow simple rules. Advanced fluorescence microscopy tools and, in particular, fluorescence correlation spectroscopy (FCS) provide complementary and exquisite information on the dynamics of fluorescent labeled molecules moving through the nuclear space and are helping us to comprehend the complexity of the nuclear structure. Here, we describe how FCS methods can be applied to reveal the dynamical organization of the nucleus in live cells. Specifically, we provide instructions for the preparation of cellular samples with fluorescent tagged proteins and detail how FCS can be easily instrumented in commercial confocal microscopes. In addition, we describe general rules to set the parameters for one and two-color experiments and the required controls for these experiments. Finally, we review the statistical analysis of the FCS data and summarize the use of numerical simulations as a complementary approach that helps us to understand the complex matrix of molecular interactions network within the nucleus.


Assuntos
Núcleo Celular/metabolismo , Microscopia Intravital/métodos , Citometria de Varredura a Laser/métodos , Espectrometria de Fluorescência/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular , Imunofluorescência/instrumentação , Imunofluorescência/métodos , Microscopia Intravital/instrumentação , Citometria de Varredura a Laser/instrumentação , Lasers , Mesocricetus , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos
7.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813528

RESUMO

Glucocorticoids are used during prostate cancer (PCa) treatment. However, they may also have the potential to drive castration resistant prostate cancer (CRPC) growth via the glucocorticoid receptor (GR). Given the association between inflammation and PCa, and the anti-inflammatory role of heme oxygenase 1 (HO-1), we aimed at identifying the molecular processes governed by the interaction between HO-1 and GR. PCa-derived cell lines were treated with Hemin, Dexamethasone (Dex), or both. We studied GR gene expression by RTqPCR, protein expression by Western Blot, transcriptional activity using reporter assays, and nuclear translocation by confocal microscopy. We also evaluated the expression of HO-1, FKBP51, and FKBP52 by Western Blot. Hemin pre-treatment reduced Dex-induced GR activity in PC3 cells. Protein levels of FKBP51, a cytoplasmic GR-binding immunophilin, were significantly increased in Hemin+Dex treated cells, possibly accounting for lower GR activity. We also evaluated these treatments in vivo using PC3 tumors growing as xenografts. We found non-significant differences in tumor growth among treatments. Immunohistochemistry analyses revealed strong nuclear GR staining in almost all groups. We did not observe HO-1 staining in tumor cells, but high HO-1 reactivity was detected in tumor infiltrating macrophages. Our results suggest an association and crossed modulation between HO-1 and GR pathways.


Assuntos
Heme Oxigenase-1/metabolismo , Neoplasias da Próstata/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Linhagem Celular Tumoral , Dexametasona/farmacologia , Intervalo Livre de Doença , Heme Oxigenase-1/genética , Hemina/farmacologia , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Bioorg Med Chem ; 26(5): 1092-1101, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428525

RESUMO

The Liver X receptors (LXRs) are members of the nuclear receptor family, that play fundamental roles in cholesterol transport, lipid metabolism and modulation of inflammatory responses. In recent years, the synthetic steroid N,N-dimethyl-3ß-hydroxycholenamide (DMHCA) arised as a promising LXR ligand. This compound was able to dissociate certain beneficial LXRs effects from those undesirable ones involved in triglyceride metabolism. Here, we synthetized a series of DMHCA analogues with different modifications in the steroidal nucleus involving the A/B ring fusion, that generate changes in the overall conformation of the steroid. The LXRα and LXRß activity of these analogues was evaluated by using a luciferase reporter assay in BHK21 cells. Compounds were tested in both the agonist and antagonist modes. Results indicated that the agonist/antagonist profile is dependent on the steroid configuration at the A/B ring junction. Notably, in contrast to DMHCA, the amide derived from lithocholic acid (2) with an A/B cis configuration and its 6,19-epoxy analogue 4 behaved as LXRα selective agonists, while the 2,19-epoxy analogues with an A/B trans configuration were antagonists of both isoforms. The binding mode of the analogues to both LXR isoforms was assessed by using 50 ns molecular dynamics (MD) simulations. Results revealed conformational differences between LXRα- and LXRß-ligand complexes, mainly in the hydrogen bonding network that involves the C-3 hydroxyl. Overall, these results indicate that the synthetized DMHCA analogues could be interesting candidates for a therapeutic modulation of the LXRs.


Assuntos
Amidas/química , Colanos/química , Receptores X do Fígado/metabolismo , Amidas/síntese química , Amidas/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Ácidos Cólicos/síntese química , Ácidos Cólicos/química , Ácidos Cólicos/metabolismo , Cricetinae , Humanos , Receptores X do Fígado/agonistas , Receptores X do Fígado/antagonistas & inibidores , Simulação de Dinâmica Molecular , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
11.
PLoS Biol ; 12(3): e1001813, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24642507

RESUMO

Glucocorticoids are essential for life, but are also implicated in disease pathogenesis and may produce unwanted effects when given in high doses. Glucocorticoid receptor (GR) transcriptional activity and clinical outcome have been linked to its oligomerization state. Although a point mutation within the GR DNA-binding domain (GRdim mutant) has been reported as crucial for receptor dimerization and DNA binding, this assumption has recently been challenged. Here we have analyzed the GR oligomerization state in vivo using the number and brightness assay. Our results suggest a complete, reversible, and DNA-independent ligand-induced model for GR dimerization. We demonstrate that the GRdim forms dimers in vivo whereas adding another mutation in the ligand-binding domain (I634A) severely compromises homodimer formation. Contrary to dogma, no correlation between the GR monomeric/dimeric state and transcriptional activity was observed. Finally, the state of dimerization affected DNA binding only to a subset of GR binding sites. These results have major implications on future searches for therapeutic glucocorticoids with reduced side effects.


Assuntos
Receptores de Glucocorticoides/química , Animais , Células Cultivadas , DNA/metabolismo , Camundongos , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/metabolismo
12.
Biochim Biophys Acta ; 1851(12): 1577-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434697

RESUMO

BACKGROUND: Liver X receptors (LXRs) are transcription factors activated by cholesterol metabolites containing an oxidized side chain. Due to their ability to regulate lipid metabolism and cholesterol transport, they have become attractive pharmacological targets. LXRs are closely related to DAF-12, a nuclear receptor involved in nematode lifespan and regulated by the binding of C-27 steroidal acids. Based on our recent finding that the lack of the C-25 methyl group does not abolish their DAF-12 activity, we evaluated the effect of removing it from the (25R)-cholestenoic acid, a LXR agonist. METHODS: The binding mode and the molecular basis of action of 27-nor-5-cholestenoic acid were evaluated using molecular dynamics simulations. The biological activity was investigated using reporter gene expression assays and determining the expression levels of endogenous target genes. The in vitro MARCoNI assay was used to analyze the interaction with cofactors. RESULTS: 27-Nor-5-cholestenoic acid behaves as an inverse agonist. This correlates with the capacity of the complex to better bind corepressors rather than coactivators. The C-25 methyl moiety would be necessary for the maintenance of a torsioned conformation of the steroid side chain that stabilizes an active LXRß state. CONCLUSION: We found that a 27-nor analog is able to act as a LXR ligand. Interestingly, this minimal structural change on the steroid triggered a drastic change in the LXR response. GENERAL SIGNIFICANCE: Results contribute to improve our understanding on the molecular basis of LXRß mechanisms of action and provide a new scaffold in the quest for selective LXR modulators.


Assuntos
Colestenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Nucleares Órfãos/antagonistas & inibidores , Receptores Nucleares Órfãos/metabolismo , Sítios de Ligação , Células HEK293 , Células Hep G2 , Humanos , Ligantes , Receptores X do Fígado , Receptores Nucleares Órfãos/genética
13.
Biochem J ; 465(1): 175-84, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25374049

RESUMO

Dafachronic acids (DAs) are 3-keto cholestenoic acids bearing a carboxylic acid moiety at the end of the steroid side chain. These compounds interact with the DAF-12 receptor, a ligand-dependent transcription factor that acts as a molecular switch mediating the choice between arrest at diapause or progression to reproductive development and adult lifespan in different nematodes. Recently, we reported that the 27-nor-Δ4-DA was able to directly activate DAF-12 in a transactivation cell-based luciferase assay and rescued the Mig phenotype of daf-9(rh50) Caenorhabditis elegans mutants. In the present paper, to investigate further the relationship between the structure of the steroid side chain and DAF-12 activity, we evaluated the in vitro and in vivo activity of Δ4-DA analogues with modified side chains using transactivation cell-based assays and daf-9(dh6) C. elegans mutants. Our results revealed that introduction of a 24,25-double bond on the cholestenoic acid side chain did not affect DAF-12 activity, whereas shortening the side chain lowered the activity. Most interestingly, the C24 alcohol 24-hydroxy-4-cholen-3-one (6) was an antagonist of the DAF-12 receptor both in vitro and in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Colestenos/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Alelos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Colestenos/química , Genes Reporter , Células HEK293 , Humanos , Ligantes
14.
Nucleic Acids Res ; 41(12): 6072-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640331

RESUMO

Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of progestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions surrounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-distribution of the active Pol II toward the 3'-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene expression by facilitating the proper passage of the polymerase along hormone-dependent genes.


Assuntos
RNA Polimerase II/metabolismo , Receptores de Progesterona/metabolismo , Elongação da Transcrição Genética , Proteína bcl-X/genética , Processamento Alternativo , Sítios de Ligação , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Humanos , Fator B de Elongação Transcricional Positiva/metabolismo , Promegestona/farmacologia , Proteína bcl-X/biossíntese , Proteína bcl-X/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
15.
Bioorg Med Chem Lett ; 23(10): 2893-6, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23570785

RESUMO

27-Nor-Δ(4)-dafachronic acid was prepared in nine steps and 14% overall yield by two sequential 2-carbon homologations from 20ß-carboxyaldehyde-4-pregnen-3-one. Its activity was evaluated in vivo, where it rescued the Mig phenotype of daf-9(rh50) Caenorhabditis elegans mutants and restored their normal resistance to oxidative stress. 27-Nor-Δ(4)-dafachronic acid was also able to directly bind and activate DAF-12 in a transactivation cell-based luciferase reporter assay, although it was less active than the corresponding 25R-and 25S dafachronic acids. The binding mode of the 27-Nor steroid was studied by molecular dynamics using a homology model of the CeDAF-12 receptor.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/química , Colestenos/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Colestenos/síntese química , Colestenos/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Receptores Citoplasmáticos e Nucleares/química , Relação Estrutura-Atividade
16.
J Cell Physiol ; 227(4): 1721-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21688264

RESUMO

Glucocorticoids influence post-natal mammary gland development by sequentially controlling cell proliferation, differentiation, and apoptosis. In the mammary gland, it has been demonstrated that glucocorticoid treatment inhibits epithelial apoptosis in post-lactating glands. In this study, our first goal was to identify new glucocorticoid target genes that could be involved in generating this effect. Expression profiling, by microarray analysis, revealed that expression of several cell-cycle control genes was altered by dexamethasone (DEX) treatment after lactation. Importantly, it was determined that not only the exogenous synthetic hormone, but also the endogenous glucocorticoids regulated the expression of these genes. Particularly, we found that the expression of cell cycle inhibitors p21CIP1, p18INK4c, and Atm was differentially regulated by glucocorticoids through the successive stages of mammary gland development. In undifferentiated cells, DEX treatment induced their expression and reduced cell proliferation, while in differentiated cells this hormone repressed expression of those cell cycle inhibitors and promoted survival. Therefore, differentiation status determined the effect of glucocorticoids on mammary cell fate. Particularly, we have determined that p21CIP1 inhibition would mediate the activity of these hormones in differentiated mammary cells because over-expression of this protein blocked DEX-induced apoptosis protection. Together, our data suggest that the multiple roles played by glucocorticoids in mammary gland development and function might be at least partially due to the alternative roles that these hormones play on the expression of cell cycle regulators.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p18/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a DNA/genética , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Lactação/efeitos dos fármacos , Lactação/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética
17.
Front Endocrinol (Lausanne) ; 13: 1037177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407312

RESUMO

Steroid hormone receptors (SHRs) belong to a large family of ligand-activated nuclear receptors that share certain characteristics and possess others that make them unique. It was thought for many years that the specificity of hormone response lay in the ligand. Although this may be true for pure agonists, the natural ligands as progesterone, corticosterone and cortisol present a broader effect by simultaneous activation of several SHRs. Moreover, SHRs share structural and functional characteristics that range from similarities between ligand-binding pockets to recognition of specific DNA sequences. These properties are clearly evident in progesterone (PR) and glucocorticoid receptors (GR); however, the biological responses triggered by each receptor in the presence of its ligand are different, and in some cases, even opposite. Thus, what confers the specificity of response to a given receptor is a long-standing topic of discussion that has not yet been unveiled. The levels of expression of each receptor, the differential interaction with coregulators, the chromatin accessibility as well as the DNA sequence of the target regions in the genome, are reliable sources of variability in hormone action that could explain the results obtained so far. Yet, to add further complexity to this scenario, it has been described that receptors can form heterocomplexes which can either compromise or potentiate the respective hormone-activated pathways with its possible impact on the pathological condition. In the present review, we summarized the state of the art of the functional cross-talk between PR and GR in breast cancer cells and we also discussed new paradigms of specificity in hormone action.


Assuntos
Neoplasias , Receptores de Progesterona , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Glucocorticoides/farmacologia , Ligantes , Progesterona/farmacologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
18.
J Mol Biol ; 434(24): 167869, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36309135

RESUMO

Steroid receptors (SRs) are ligand-dependent transcription factors (TFs) relevant to key cellular processes in both physiology and pathology, including some types of cancer. SOX2 is a master TF of pluripotency and self-renewal of embryonic stem cells, and its dysregulation is also associated with various types of human cancers. A potential crosstalk between these TFs could be relevant in malignant cells yet, to the best of our knowledge, no formal study has been performed thus far. Here we show, by quantitative live-cell imaging microscopy, that ectopic expression of SOX2 disrupts the formation of hormone-dependent intranuclear condensates of many steroid receptors (SRs), including those formed by the glucocorticoid receptor (GR). SOX2 also reduces GR's binding to specific DNA targets and modulates its transcriptional activity. SOX2-driven effects on GR condensates do not require the intrinsically disordered N-terminal domain of the receptor and, surprisingly, neither relies on GR/SOX2 interactions. SOX2 also alters the intranuclear dynamics and compartmentalization of the SR coactivator NCoA-2 and impairs GR/NCoA-2 interactions. These results suggest an indirect mechanism underlying SOX2-driven effects on SRs involving this coactivator. Together, these results highlight that the transcriptional program elicited by GR relies on its nuclear organization and is intimately linked to the distribution of other GR partners, such as the NCoA-2 coactivator. Abnormal expression of SOX2, commonly observed in many tumors, may alter the biological action of GR and, probably, other SRs as well. Understanding this crosstalk may help to improve steroid hormone-based therapies in cancers with elevated SOX2 expression.


Assuntos
Receptores de Glucocorticoides , Fatores de Transcrição SOXB1 , Ativação Transcricional , Humanos , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
19.
J Steroid Biochem Mol Biol ; 217: 106046, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34920079

RESUMO

Oxysterols are a family of over 25 cholesterol metabolites naturally produced by enzymatic or radical oxidation. They are involved in many physiological and pathological pathways. Although their activity has been mainly attributed to the modulation of the Liver X Receptors (LXR), it is currently accepted that oxysterols are quite promiscuous compounds, acting at several targets at the same time. The promiscuity of the oxysterols with the Estrogen Receptor α (ERα) is crucial in several pathologies such as ER+ breast cancer, inflammation and atherosclerosis. Regarding this matter, we have previously reported the synthesis, LXR activity and binding mode of a family of cholestenoic acid analogs with a modified side chain. Here we report the transcriptional activity on the ERα triggered by these compounds and details on the molecular determinants involved in their activities in order to establish structure-activity relationships to shed light over the molecular basis of the promiscuity of these compounds on ER/LXR responses. Our results show that 3ß-hydroxy-5-cholestenoic acid can interact with the ERα receptor in a way similar to 26-hydroxycholesterol and is an agonist of the receptor. Using molecular dynamics simulations, we were able to predict the ERα activity of a set of cholestenoic acid analogs with changes in the flexibility and/or steric requirements of the side chain, some of which exhibited selective activation of ERα or LXR.


Assuntos
Receptor alfa de Estrogênio , Oxisteróis , Colestenos/química , Receptor alfa de Estrogênio/genética , Receptores X do Fígado/agonistas , Oxisteróis/química
20.
Bioorg Med Chem ; 19(5): 1683-91, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21315613

RESUMO

The biological activity of two seven-membered A-ring (A-homo) analogues of progesterone was evaluated by transactivation assays in Cos-1 cells and by determination of Bcl-x(L) expression levels in T47D cells. The results show that both compounds act as selective progesterone receptor (PR) agonists but lack mineralocorticoid receptor (MR) activity. Molecular modelling using semiempirical AM1 and ab initio HF/6-31G** calculations, showed that the A-ring of the A-homo steroids may adopt five different conformations, although only three correspond to low energy conformers. The low energy conformers of each analogue were introduced into the ligand binding pocket of the PR ligand binding domain (LBD) obtained from the PR LBD-progesterone crystal structure. The steroid binding mode was then analyzed using 10 ns of molecular dynamics (MD) simulation. The PR LBD-progesterone complex was also simulated as a control system. The MD results showed that both A-homo steroids have one conformer that may be properly recognized by the PR, in agreement with the observed progestagen activity. Moreover, the simulation revealed the importance of a water molecule in the formation of a hydrogen bonding network among specific receptor residues and the steroid A-ring carbonyl.


Assuntos
Ligantes , Pregnanos/metabolismo , Progesterona/química , Receptores de Progesterona/metabolismo , Animais , Células COS , Chlorocebus aethiops , Modelos Moleculares , Simulação de Dinâmica Molecular , Pregnanos/agonistas , Pregnanos/síntese química , Progesterona/análogos & derivados , Progesterona/metabolismo , Receptores de Progesterona/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA