Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 57(10): 2058-2075, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27481893

RESUMO

Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.


Assuntos
Vias Biossintéticas/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Análise por Conglomerados , Epitopos/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Glucanos/metabolismo , Ligantes , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal
2.
Plant Physiol ; 161(4): 1615-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23391577

RESUMO

Grass cell wall properties influence food, feed, and biofuel feedstock usage efficiency. The glucuronoarabinoxylan of grass cell walls is esterified with the phenylpropanoid-derived hydroxycinnamic acids ferulic acid (FA) and para-coumaric acid (p-CA). Feruloyl esters undergo oxidative coupling with neighboring phenylpropanoids on glucuronoarabinoxylan and lignin. Examination of rice (Oryza sativa) mutants in a grass-expanded and -diverged clade of BAHD acyl-coenzyme A-utilizing transferases identified four mutants with altered cell wall FA or p-CA contents. Here, we report on the effects of overexpressing one of these genes, OsAt10 (LOC_Os06g39390), in rice. An activation-tagged line, OsAT10-D1, shows a 60% reduction in matrix polysaccharide-bound FA and an approximately 300% increase in p-CA in young leaf tissue but no discernible phenotypic alterations in vegetative development, lignin content, or lignin composition. Two additional independent OsAt10 overexpression lines show similar changes in FA and p-CA content. Cell wall fractionation and liquid chromatography-mass spectrometry experiments isolate the cell wall alterations in the mutant to ester conjugates of a five-carbon sugar with p-CA and FA. These results suggest that OsAT10 is a p-coumaroyl coenzyme A transferase involved in glucuronoarabinoxylan modification. Biomass from OsAT10-D1 exhibits a 20% to 40% increase in saccharification yield depending on the assay. Thus, OsAt10 is an attractive target for improving grass cell wall quality for fuel and animal feed.


Assuntos
Aciltransferases/metabolismo , Metabolismo dos Carboidratos , Parede Celular/enzimologia , Ácidos Cumáricos/metabolismo , Oryza/citologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Ácidos Cumáricos/química , DNA Bacteriano/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Testes Genéticos , Genoma de Planta/genética , Glucose/metabolismo , Padrões de Herança/genética , Lignina/metabolismo , Mutagênese Insercional/genética , Mutação/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Penicillium/metabolismo , Fenótipo , Filogenia , Folhas de Planta/metabolismo , Análise de Componente Principal , Solubilidade , Ácido Trifluoracético/metabolismo
3.
Sci Adv ; 2(10): e1600393, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27757415

RESUMO

Angiosperms represent most of the terrestrial plants and are the primary research focus for the conversion of biomass to liquid fuels and coproducts. Lignin limits our access to fibers and represents a large fraction of the chemical energy stored in plant cell walls. Recently, the incorporation of monolignol ferulates into lignin polymers was accomplished via the engineering of an exotic transferase into commercially relevant poplar. We report that various angiosperm species might have convergently evolved to natively produce lignins that incorporate monolignol ferulate conjugates. We show that this activity may be accomplished by a BAHD feruloyl-coenzyme A monolignol transferase, OsFMT1 (AT5), in rice and its orthologs in other monocots.

4.
RNA ; 9(10): 1180-7, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-13130132

RESUMO

Whereas ATPgammaS is often considered a nonhydrolyzable substrate for ATPases, we present evidence that ATPgammaS is a good substrate for the RNA-stimulated nucleotide hydrolysis and RNA unwinding activities of eIF4A. In the presence of saturating single-stranded poly(U) RNA, eIF4A hydrolyzes ATPgammaS.Mg and ATP.Mg with similar steady-state parameters (KM(NTP.Mg) = 66 and 58 microM and kcat = 1.0 and 0.97 min(-1), respectively). ATPgammaS.Mg also supports catalysis of RNA unwinding within 10-fold of the rate supported by ATP.Mg. The identical steady-state rate parameters, in comparison with the expected difference in the intrinsic rate of hydrolysis for ATP and ATPgammaS, suggest a nonchemical rate-limiting step for nucleotide hydrolysis. These results raise caution concerning the assumption that ATPgammaS is a nonhydrolyzable ATP analog and underscore the utility of thio-substituted NTPs as mechanistic probes.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA/metabolismo , Difosfato de Adenosina , Adenosina Trifosfatases/metabolismo , Animais , Catálise , Escherichia coli/metabolismo , Hidrólise , Cinética , Magnésio , Camundongos , Ligação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA