Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Biol ; 16(1): 128, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376833

RESUMO

Reinvestigation of the raw data revealed an unfortunate error in Ugelvig et al. 2008 [1].

2.
Proc Natl Acad Sci U S A ; 108(1): 220-5, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173219

RESUMO

Because invasive species threaten the integrity of natural ecosystems, a major goal in ecology is to develop predictive models to determine which species may become widespread and where they may invade. Indeed, considerable progress has been made in understanding the factors that influence the local pattern of spread for specific invaders and the factors that are correlated with the number of introduced species that have become established in a given region. However, few studies have examined the relative importance of multiple drivers of invasion success for widespread species at global scales. Here, we use a dataset of >5,000 presence/absence records to examine the interplay between climatic suitability, biotic resistance by native taxa, human-aided dispersal, and human modification of habitats, in shaping the distribution of one of the world's most notorious invasive species, the Argentine ant (Linepithema humile). Climatic suitability and the extent of human modification of habitats are primarily responsible for the distribution of this global invader. However, we also found some evidence for biotic resistance by native communities. Somewhat surprisingly, and despite the often cited importance of propagule pressure as a crucial driver of invasions, metrics of the magnitude of international traded commodities among countries were not related to global distribution patterns. Together, our analyses on the global-scale distribution of this invasive species provide strong evidence for the interplay of biotic and abiotic determinants of spread and also highlight the challenges of limiting the spread and subsequent impact of highly invasive species.


Assuntos
Formigas/crescimento & desenvolvimento , Clima , Ecologia/métodos , Ecossistema , Espécies Introduzidas/tendências , Modelos Biológicos , Animais , Comércio , Simulação por Computador , Bases de Dados Factuais , Geografia , Atividades Humanas , Humanos , Análise de Regressão
3.
Front Zool ; 7: 20, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20591186

RESUMO

BACKGROUND: Ants typically distinguish nestmates from non-nestmates based on the perception of colony-specific chemicals, particularly cuticular hydrocarbons present on the surface of the ants' exoskeleton. These recognition cues are believed to play an important role in the formation of vast so-called supercolonies that have been described for some invasive ant species, but general conclusions about the role of these cues are hampered by only few species being studied. Here we use data on cuticular hydrocarbons, aggression and microsatellite genetic markers to investigate the interdependence of chemical recognition cues, genetic distance and nestmate discrimination in the pharaoh ant (Monomorium pharaonis), a widespread pest species, and ask whether introduced populations of this species are genetically differentiated and exhibit intraspecific aggression. RESULTS: Microsatellite analyses of a total of 35 colonies from four continents revealed extremely high levels of genetic differentiation between almost all colonies (FST = 0.751 +/- 0.006 SE) and very low within-colony diversity. This implies that at least 34 and likely hundreds more independent lineages of this ant have spread worldwide. Aggression tests involving workers from 14 different colonies showed only low levels of aggression, even between colonies that were geographically and/or genetically very distant. Chemical analyses of groups of worker ants showed that all colonies had the same cuticular compounds, which varied only quantitatively among colonies. There was a positive correlation between geographical and genetic distance, but no other significant relationships were detected between aggression, chemical profile, genetic distance and geographical distance. CONCLUSIONS: The pharaoh ant has a global invasion history of numerous independent introductions resulting in genetically highly differentiated colonies typically displaying surprisingly low levels of intraspecific aggression, a behaviour that may have evolved in the native range or by lineage selection in the introduced range.

4.
Nature ; 428(6978): 35-6, 2004 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-14999273

RESUMO

Multiple mating (polyandry) is widespread among animal groups, particularly insects. But the factors that maintain it and underlie its evolution are hard to verify because benefits and costs are not easily quantified and they tend to be similar in related species. Here we compare the mating strategies of the leaf-cutting ant Acromyrmex echinatior and its recently derived social parasite Acromyrmex insinuator, which is also its closest relative. We find that although the host queens mate with up to a dozen different males, the social parasite mates only singly. This rapid and surprising reversion to single mating in a socially parasitic ant indicates that the costs of polyandry are probably specific to a free-living lifestyle.


Assuntos
Formigas/fisiologia , Formigas/parasitologia , Parasitos/fisiologia , Comportamento Sexual Animal , Animais , Evolução Biológica , Feminino , Interações Hospedeiro-Parasita , Masculino , Panamá
5.
BMC Biol ; 6: 11, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18302731

RESUMO

BACKGROUND: The invasive garden ant, Lasius neglectus, is the most recently detected pest ant and the first known invasive ant able to become established and thrive in the temperate regions of Eurasia. In this study, we aim to reconstruct the invasion history of this ant in Europe analysing 14 populations with three complementary approaches: genetic microsatellite analysis, chemical analysis of cuticular hydrocarbon profiles and behavioural observations of aggression behaviour. We evaluate the relative informative power of the three methodological approaches and estimate both the number of independent introduction events from a yet unknown native range somewhere in the Black Sea area, and the invasive potential of the existing introduced populations. RESULTS: Three clusters of genetically similar populations were detected, and all but one population had a similar chemical profile. Aggression between populations could be predicted from their genetic and chemical distance, and two major clusters of non-aggressive groups of populations were found. However, populations of L. neglectus did not separate into clear supercolonial associations, as is typical for other invasive ants. CONCLUSION: The three methodological approaches gave consistent and complementary results. All joint evidence supports the inference that the 14 introduced populations of L. neglectus in Europe likely arose from only very few independent introductions from the native range, and that new infestations were typically started through introductions from other invasive populations. This indicates that existing introduced populations have a very high invasive potential when the ants are inadvertently spread by human transport.


Assuntos
Formigas/fisiologia , Agressão , Alelos , Animais , Formigas/química , Formigas/genética , Europa (Continente) , Variação Genética , Genética Populacional , Repetições de Microssatélites
6.
Evolution ; 60(4): 782-91, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16739459

RESUMO

Kinship among group members has long been recognized as a main factor promoting the evolution of sociality and reproductive altruism, yet some ants have an extraordinary social organization, called unicoloniality, whereby individuals mix freely among physically separated nests. This type of social organization is not only a key attribute responsible for the ecological dominance of these ants, but also an evolutionary paradox because relatedness between nestmates is effectively zero. Recently, it has been proposed that, in the Argentine ant, unicoloniality is a derived trait that evolved after its introduction into new habitats. Here we test this basic assumption by conducting a detailed genetic analysis of four native and six introduced populations with five to 15 microsatellite loci and one mitochondrial gene. In contrast to the assumption that native populations consist of family-based colonies with related individuals who are aggressive toward members of other colonies, we found that native populations also form supercolonies, and are effectively unicolonial. Moreover, just as in introduced populations, the relatedness between nestmates is not distinguishable from zero in these native range supercolonies. Genetic differentiation between native supercolonies was very high for both nuclear and mitochondrial markers, indicating extremely limited gene flow between supercolonies. The only important difference between the native and introduced populations was that supercolonies were several orders of magnitude smaller in the native range (25-500 m). This size difference has important consequences for our understanding of the evolution and stability of unicolonial structures because the relatively small size of supercolonies in the native range implies that competition can occur between supercolonies, which can act as a break on the spread of selfish mutants by eliminating supercolonies harboring them.


Assuntos
Formigas/genética , Comportamento Social , Animais , Comportamento Animal , Evolução Biológica , Meio Ambiente , Evolução Molecular , Feminino , Frequência do Gene , Genética Populacional , Haplótipos , Masculino , Repetições de Microssatélites , Modelos Genéticos
7.
Evolution ; 63(6): 1627-39, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19154388

RESUMO

Some introduced ant populations have an extraordinary social organization, called unicoloniality, whereby individuals mix freely within large supercolonies. We investigated whether this mode of social organization also exists in native populations of the Argentine ant Linepithema humile. Behavioral analyses revealed the presence of 11 supercolonies (width 1 to 515 m) over a 3-km transect. As in the introduced range, there was always strong aggression between but never within supercolonies. The genetic data were in perfect agreement with the behavioral tests, all nests being assigned to identical supercolonies with the different methods. There was strong genetic differentiation between supercolonies but no genetic differentiation among nests within supercolonies. We never found more than a single mitochondrial haplotype per supercolony, further supporting the view that supercolonies are closed breeding units. Genetic and chemical distances between supercolonies were positively correlated, but there were no other significant associations between geographic, genetic, chemical, and behavioral distances. A comparison of supercolonies sampled in 1999 and 2005 revealed a very high turnover, with about one-third of the supercolonies being replaced yearly. This dynamic is likely to involve strong competition between supercolonies and thus act as a potent selective force maintaining unicoloniality over evolutionary time.


Assuntos
Formigas/genética , Comportamento Animal/fisiologia , Evolução Biológica , Estruturas Genéticas , Genética Populacional , Comportamento Social , Animais , Formigas/química , Argentina , Feminino , Variação Genética , Hidrocarbonetos/análise , Masculino
8.
PLoS One ; 3(12): e3838, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19050762

RESUMO

It is unclear why some species become successful invaders whilst others fail, and whether invasive success depends on pre-adaptations already present in the native range or on characters evolving de-novo after introduction. Ants are among the worst invasive pests, with Lasius neglectus and its rapid spread through Europe and Asia as the most recent example of a pest ant that may become a global problem. Here, we present the first integrated study on behavior, morphology, population genetics, chemical recognition and parasite load of L. neglectus and its non-invasive sister species L. turcicus. We find that L. neglectus expresses the same supercolonial syndrome as other invasive ants, a social system that is characterized by mating without dispersal and large networks of cooperating nests rather than smaller mutually hostile colonies. We conclude that the invasive success of L. neglectus relies on a combination of parasite-release following introduction and pre-adaptations in mating system, body-size, queen number and recognition efficiency that evolved long before introduction. Our results challenge the notion that supercolonial organization is an inevitable consequence of low genetic variation for chemical recognition cues in small invasive founder populations. We infer that low variation and limited volatility in cuticular hydrocarbon profiles already existed in the native range in combination with low dispersal and a highly viscous population structure. Human transport to relatively disturbed urban areas thus became the decisive factor to induce parasite release, a well established general promoter of invasiveness in non-social animals and plants, but understudied in invasive social insects.


Assuntos
Agressão , Formigas/genética , Comportamento Animal , Evolução Biológica , Genética Populacional , Animais , Formigas/química , Formigas/microbiologia , Formigas/parasitologia , Ásia , Beauveria/isolamento & purificação , Europa (Continente) , Hidrocarbonetos/análise , Comportamento de Nidação , Dinâmica Populacional , Wolbachia/isolamento & purificação
9.
Proc Natl Acad Sci U S A ; 99(9): 6075-9, 2002 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11959924

RESUMO

Some ants have an extraordinary social organization, called unicoloniality, whereby individuals mix freely among physically separated nests. This type of social organization is not only a key attribute responsible for the ecological domination of these ants, but also an evolutionary paradox and a potential problem for kin selection theory because relatedness between nest mates is effectively zero. The introduction of the Argentine ant in Europe was apparently accompanied by a dramatic loss of inter-nest aggression and the formation of two immense supercolonies (which effectively are two unicolonial populations). Introduced populations experienced only limited loss of genetic diversity at neutral markers, indicating that the breakdown of recognition ability is unlikely to be merely due to a genetic bottleneck. Rather, we suggest that a "genetic cleansing" of recognition cues occurred after introduction. Indeed workers of the same supercolony are never aggressive to each other despite the large geographical distance and considerable genetic differentiation between sampling sites. By contrast, aggression is invariably extremely high between the two supercolonies, indicating that they have become fixed for different recognition alleles. The main supercolony, which ranges over 6,000 km from Italy to the Spanish Atlantic coast, effectively forms the largest cooperative unit ever recorded.


Assuntos
Evolução Biológica , Agressão , Alelos , Animais , Formigas/genética , Formigas/fisiologia , Europa (Continente) , Variação Genética
10.
Mol Ecol ; 13(8): 2381-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15245410

RESUMO

Army ants have long been suspected to represent an independent origin of multiple queen-mating in the social Hymenoptera. Using microsatellite markers, we show that queens of the African army ant Dorylus (Anomma) molestus have the highest absolute (17.3) and effective (17.5) queen-mating frequencies reported so far for ants. This confirms that obligate multiple queen-mating in social insects is associated with large colony size and advanced social organization, but also raises several novel questions. First, these high estimates place army ants in the range of mating frequencies of honeybees, which have so far been regarded as odd exceptions within the social Hymenoptera. Army ants and honeybees are fundamentally different in morphology and life history, but are the only social insects known that combine obligate multiple mating with reproduction by colony fission and extremely male-biased sex ratios. This implies that the very high numbers of matings in both groups may be due partly to the relatively low costs of additional matings. Second, we were able to trace recent events of colony fission in four of the investigated colonies, where the genotypes of the two queens were only compatible with a mother-daughter relationship. A direct comparison of male production between colonies with offspring from one and two queens, respectively, suggested strongly that new queens do not produce a sexual brood until all workers of the old queen have died, which is consistent with kin selection theory.


Assuntos
Formigas/fisiologia , Seleção Genética , Comportamento Sexual Animal/fisiologia , Comportamento Social , Animais , Formigas/genética , Feminino , Frequência do Gene , Genótipo , Quênia , Masculino , Repetições de Microssatélites/genética , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA