Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 27(2): 200-10, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24392701

RESUMO

Reactive oxygen species generate many lesions in DNA, including R and S diastereomers of 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG). Herein, the result of replication of a plasmid containing S-cdA in Escherichia coli is reported. S-cdA was found mutagenic and highly genotoxic. Viability and mutagenicity of the S-cdA construct were dependent on functional pol V, but mutational frequencies (MFs) and types varied in pol II- and pol IV-deficient strains relative to the wild-type strain. Both S-cdA → T and S-cdA → G substitutions occurred in equal frequency in wild-type E. coli, but the frequency of S-cdA → G dropped in pol IV-deficient strain, especially when being SOS induced. This suggests that pol IV plays a role in S-cdA → G mutations. MF increased significantly in pol II-deficient strain, suggesting pol II's likely role in error-free translesion synthesis. Primer extension and steady-state kinetic studies using pol IV, exo-free Klenow fragment (KF (exo(-))), and Dpo4 were performed to further assess the replication efficiency and fidelity of S-cdA and S-cdG. Primer extension by pol IV mostly stopped before the lesion, although a small fraction was extended opposite the lesion. Kinetic studies showed that pol IV incorporated dCMP almost as efficiently as dTMP opposite S-cdA, whereas it incorporated the correct nucleotide dCMP opposite S-cdG 10-fold more efficiently than any other dNMP. Further extension of each lesion containing pair, however, was very inefficient. These results are consistent with the role of pol IV in S-cdA → G mutations in E. coli. KF (exo(-)) was also strongly blocked by both lesions, but it could slowly incorporate the correct nucleotide opposite them. In contrast, Dpo4 could extend a small fraction of the primer to a full-length product on both S-cdG and S-cdA templates. Dpo4 incorporated dTMP preferentially opposite S-cdA over the other dNMPs, but the discrimination was only 2- to 8-fold more proficient. Further extension of the S-cdA:T and S-cdA:C pair was not much different. For S-cdG, conversely, the wrong nucleotide, dTMP, was incorporated more efficiently than dCMP, although one-base extension of the S-cdG:T pair was less efficient than the S-cdG:C pair. S-cdG, therefore, has the propensity to cause G → A transition, as was reported to occur in E. coli. The results of this study are consistent with the strong replication blocking nature of S-cdA and S-cdG, and their ability to initiate error-prone synthesis by Y-family DNA polymerases.


Assuntos
Desoxiadenosinas/genética , Desoxiguanosina/análogos & derivados , Escherichia coli/genética , Mutagênicos , DNA Polimerase I/genética , DNA Polimerase beta/genética , Desoxiguanosina/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Nucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA