Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 22(3): 326-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21964726

RESUMO

The affinity of the D-galactose-binding lectin from Artocarpus heterophyllus lectin, known as jacalin, with immonuglobulins (Igs) was determined by biofunctionalization of a piezoelectric transducer. This piezoelectric biofunctionalized transducer was used as a mass-sensitive analytical tool, allowing the real-time binding analysis of jacalin-human immunoglobulin A1 (IgA(1)) and jacalin-bovine IgG(1) interactions from which the apparent affinity constant was calculated. The strategy was centered in immobilizing jacalin on the gold electrode's surface of the piezoelectric crystal resonator using appropriate procedures based on self-assembling of 11-mercaptoundecanoic acid and 2-mercaptoethanol thiol's mixture, a particular immobilization strategy by which it was possible to avoid cross-interaction between the proteins over electrode's surface. The apparent affinity constants obtained between jacalin-human IgA(1) and jacalin-bovine IgG(1) differed by 1 order of magnitude [(8.0 ± 0.9) 10(5) vs (8.3 ± 0.1) 10(6) L mol(-1)]. On the other hand, the difference found between human IgA(1) and human IgA(2) interaction with jacalin, eight times higher for IgA(1), was attributed to the presence of O-linked glycans in the IgA(1) hinge region, which is absent in IgA(2). Specific interaction of jacalin with O-glycans, proved to be present in the human IgA(1) and hypothetically present in bovine IgG(1) structures, is discussed as responsible for the obtained affinity values.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Imunoglobulina A/química , Imunoglobulina G/química , Lectinas de Plantas/química , Algoritmos , Animais , Bovinos , Humanos , Proteínas Imobilizadas/química , Ligação Proteica , Quartzo/química
2.
Biochem Biophys Res Commun ; 408(4): 571-5, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21521632

RESUMO

Xylella fastidiosa is a gram-negative bacterium that causes serious diseases in economically important crops, including grapevine, coffee, and citrus fruits. X. fastidiosa colonizes the xylem vessels of the infected plants, thereby blocking water and nutrient transport. The genome sequence of X. fastidiosa has revealed an operon containing nine genes possibly involved in the synthesis of an exopolisaccharide (EPS) named fastidian gum that can be related with the pathogenicity of this bacterium. The α-1,3-mannosyltransferase (GumH) enzyme from X. fastidiosa is involved in fastidian gum production. GumH is responsible for the transfer of mannose from guanosine diphosphate mannose (GDP-man) to the cellobiose-pyrophosphate-polyprenol carrier lipid (CPP-Lip) during the assembly and biosynthesis of EPS. In this work, a method for real-time detection of recombinant GumH enzymatic activity was successfully developed using a Quartz Crystal Microbalance with dissipation monitoring (QCM-D). The QCM-D transducer was strategically modified with CPP-Lip by using a solid-supported lipid bilayer that makes use of a self-assembled monolayer of 1-undecanethiol. Monitoring the real-time CPP-Lip QCM-D transducer in the presence of GDP-man and GumH enzyme shows a mass increase, indicating the transfer of mannose. The real-time QCM-D determination of mannosyltransferase function was validated by a High Performance Liquid Chromatography (LC) method developed for determination of GDP produced by enzymatic reaction. LC results confirmed the activity of recombinant GumH protein, which is the first enzyme involved in the biosynthesis of the EPS from X. fastidiosa enzymatically characterized.


Assuntos
Proteínas de Bactérias/química , Manosiltransferases/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Xylella/enzimologia , Proteínas de Bactérias/genética , Enzimas Imobilizadas/química , Manosiltransferases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Xylella/genética
3.
Anal Chim Acta ; 862: 86-93, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25682432

RESUMO

The hemoglobin (Hb) released from erythrocytes is a primary nutritive component for many blood-feeding parasites. The aspartic protease cathepsin D is a hemoglobinase that is involved in the Hb degradation process and is considered an interesting target for chemotherapy intervention. However, traditional enzymatic assays for studying Hb degradation utilize spectrophotometric techniques, which do not allow real-time monitoring and can present serious interference problems. Herein, we describe a biosensor using simple approach for the real-time monitoring of Hb hydrolysis as well as an efficient screening method for natural products as enzymatic inhibitors using a quartz crystal microbalance (QCM) technique. Hemoglobin was anchored on the quartz crystal surface using mixed self-assembled monolayers. The addition of the enzyme caused a mass change (frequency shift) due to Hb hydrolysis, which was monitored in real time. From the frequency change patterns of the Hb-functionalized QCM, we evaluated the enzymatic reaction by determining the kinetic parameters of product formation (k(cat)). The QCM enzymatic assay using immobilized human Hb was shown to be an excellent approach for screening possible inhibitors in complex mixtures, opening up a new avenue for the discovery of novel inhibitors.


Assuntos
Produtos Biológicos/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Hemoglobinas/metabolismo , Inibidores de Proteases/análise , Técnicas de Microbalança de Cristal de Quartzo , Produtos Biológicos/farmacologia , Catepsina D/antagonistas & inibidores , Catepsina D/metabolismo , Hemoglobinas/análise , Humanos , Hidrólise/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Relação Estrutura-Atividade , Fatores de Tempo
4.
Talanta ; 65(2): 505-10, 2005 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18969827

RESUMO

Milk samples can be efficiently digested using a focused microwave oven, however the conventional procedure of addition of concentrated acids to the liquid sample leads to digestates with elevated acidity and residual carbon concentrations. In this work a focused microwave oven was applied for acid digestion of bovine milk samples using a conventional and an alternative procedure based on gradual sample addition to hot and concentrated acids. A two-level 2(3) full factorial design experiment with eight runs was carried out to evaluate the optimum experimental conditions for reducing both the residual carbon and the final acidity of digestates. The three studied parameters were: temperature of the digestion medium for sample addition, addition of sulfuric acid before the sample or during the first step, and number of aliquots of the sample gradually added. The best conditions were attained by adding small aliquots of milk (ten-fold a volume of 0.5ml added during 5.0min) to a digestion mixture containing 3.0ml nitric acid plus 1.0ml sulfuric acid heated at 105 degrees C. It was demonstrated that the digestion efficiency of the alternative procedure was better than the conventional procedure, i.e. 98 and 80%, respectively. The alternative procedure was applied for determination of Ba, Ca, Cu, K, Mg, Na, P, and Zn in whole and non-fat bovine milk. The accuracy was proved using two certified reference materials (whole and non-fat milk powder).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA