Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Med Chem ; 19(27): 4708-19, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22834818

RESUMO

Dendrimers are artificial polymeric macromolecules which are widely considered to be a promising tool for future gene therapy applications. They have been used as efficient delivery vehicles for antisense oligonucleotides targeting the interior of cells. We demonstrate that dendriplexes formed from anti-HIV oligodeoxynucleotides ANTI-TAR, GEM91, and SREV in complex with generation 4 maltose (PPI-Mal G4) and maltotriose (PPI-Mal-III G4) modified poly(propylene imine) dendrimers are able to self-assemble into highly organized 1D and 3D nanostructures. The resulting nanostructures were characterized by fluorescence methods, laser Doppler electrophoresis, dynamic light scattering (DLS), atomic force microscopy (AFM) and molecular modeling. The results show that ANTI-TAR and GEM 91 dendriplexes self-assemble into fibrils with length scales up to several hundreds of nm. SREV, on the contrary, forms quadrilateral- like 3D nanostructures. A good correlation between the various experimental methods and molecular modeling indicates the formation of those nanostructures in solution. Space symmetry of the oligonucleotides and the resulting dendriplex monomeric units are probably the most important factors which influence the way of self-assembling.


Assuntos
Fármacos Anti-HIV/química , Dendrímeros/química , Oligonucleotídeos Antissenso/química , Polipropilenos/química , Fármacos Anti-HIV/administração & dosagem , Polarização de Fluorescência , Infecções por HIV/tratamento farmacológico , Humanos , Luz , Maltose/química , Modelos Moleculares , Nanoestruturas/química , Oligonucleotídeos Antissenso/administração & dosagem , Espalhamento de Radiação , Tionucleotídeos/química
2.
Pharmaceutics ; 3(3): 458-73, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24310590

RESUMO

Research concerning new targeting delivery systems for pharmacologically active molecules and genetic material is of great importance. The aim of the present study was to investigate the potential of fourth generation (P4) cationic phosphorus-containing dendrimers to bind fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS), anti-neoplastic drug cisplatin, anti-HIV siRNA siP24 and its capability to deliver green fluorescent protein gene (pGFP) into cells. The interaction between P4 and ANS (as the model drug) was investigated. The binding constant and the number of binding centers per one molecule of P4 were determined. In addition, the dendriplex between P4 and anti-HIV siRNA siP24 was characterized using circular dichroism, fluorescence polarization and zeta-potential methods; the average hydrodynamic diameter of the dendriplex was calculated using zeta-size measurements. The efficiency of transfection of pGFP using P4 was determined in HEK293 cells and human mesenchymal stem cells, and the cytotoxicity of the P4-pGFP dendriplex was studied. Furthermore, enhancement of the toxic action of the anti-neoplastic drug cisplatin by P4 dendrimers was estimated. Based on the results, the fourth generation cationic phosphorus-containing dendrimers seem to be a good drug and gene delivery carrier candidate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA