RESUMO
In C. elegans, 283 clec genes encode a highly diverse family of C-type lectin-like domain (CTLD) proteins. Since vertebrate CTLD proteins have characterized functions in defense responses against pathogens and since expression of C. elegans clec genes is pathogen-dependent, it is generally assumed that clec genes function in C. elegans immune defenses. However, little is known about the relative contribution and exact function of CLEC proteins in C. elegans immunity. Here, we focused on the C. elegans clec gene clec-4, whose expression is highly upregulated by pathogen infection, and its paralogs clec-41 and clec-42. We found that, while mutation of clec-4 resulted in enhanced resistance to the Gram-positive pathogen Bacillus thuringiensis MYBt18247 (Bt247), inactivation of clec-41 and clec-42 by RNAi enhanced susceptibility to Bt247. Further analyses revealed that enhanced resistance of clec-4 mutants to Bt247 was due to an increase in feeding cessation on the pathogen and consequently a decrease in pathogen load. Moreover, clec-4 mutants exhibited feeding deficits also on non-pathogenic bacteria that were in part reflected in the clec-4 gene expression profile, which overlapped with gene sets affected by starvation or mutation in nutrient sensing pathways. However, loss of CLEC-4 function only mildly affected life-history traits such as fertility, indicating that clec-4 mutants are not subjected to dietary restriction. While CLEC-4 function appears to be associated with the regulation of feeding behavior, we show that CLEC-41 and CLEC-42 proteins likely function as bona fide immune effector proteins that have bacterial binding and antimicrobial capacities. Together, our results exemplify functional diversification within clec gene paralogs.
Assuntos
Bacillus thuringiensis/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Lectinas Tipo C/metabolismo , Transcriptoma , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Comportamento Alimentar , Imunidade , Lectinas Tipo C/genética , Mutação com Perda de Função , Domínios Proteicos , Interferência de RNA , Regulação para CimaRESUMO
The nematode Caenorhabditis elegans has been extensively used as a model for the study of innate immune responses against bacterial pathogens. While it is well established that the worm mounts distinct transcriptional responses to different bacterial species, it is still unclear in how far it can fine-tune its response to different strains of a single pathogen species, especially if the strains vary in virulence and infection dynamics. To rectify this knowledge gap, we systematically analyzed the C. elegans response to two strains of Bacillus thuringiensis (Bt), MYBt18247 (Bt247) and MYBt18679 (Bt679), which produce different pore forming toxins (PFTs) and vary in infection dynamics. We combined host transcriptomics with cytopathological characterizations and identified both a common and also a differentiated response to the two strains, the latter comprising almost 10% of the infection responsive genes. Functional genetic analyses revealed that the AP-1 component gene jun-1 mediates the common response to both Bt strains. In contrast, the strain-specific response is mediated by the C. elegans GATA transcription factor ELT-2, a homolog of Drosophila SERPENT and vertebrate GATA4-6, and a known master regulator of intestinal responses in the nematode. elt-2 RNAi knockdown decreased resistance to Bt679, but remarkably, increased survival on Bt247. The elt-2 silencing-mediated increase in survival was characterized by reduced intestinal tissue damage despite a high pathogen burden and might thus involve increased tolerance. Additional functional genetic analyses confirmed the involvement of distinct signaling pathways in the C. elegans defense response: the p38-MAPK pathway acts either directly with or in parallel to elt-2 in mediating resistance to Bt679 infection but is not required for protection against Bt247. Our results further suggest that the elt-2 silencing-mediated increase in survival on Bt247 is multifactorial, influenced by the nuclear hormone receptors NHR-99 and NHR-193, and may further involve lipid metabolism and detoxification. Our study highlights that the nematode C. elegans with its comparatively simple immune defense system is capable of generating a differentiated response to distinct strains of the same pathogen species. Importantly, our study provides a molecular insight into the diversity of biological processes that are influenced by a single master regulator and jointly determine host survival after pathogen infection.
Assuntos
Bacillus thuringiensis/metabolismo , Infecções Bacterianas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Transcrição GATA/metabolismo , Sistema de Sinalização das MAP Quinases , Transcrição Gênica , Animais , Bacillus thuringiensis/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição GATA/genéticaRESUMO
Red Queen dynamics, involving coevolutionary interactions between species, are ubiquitous, shaping the evolution of diverse biological systems. To date, information on the underlying selection dynamics and the involved genome regions is mainly available for bacteria-phage systems or only one of the antagonists of a eukaryotic host-pathogen interaction. We add to our understanding of these important coevolutionary interactions using an experimental host-pathogen model, which includes the nematode Caenorhabditis elegans and its pathogen Bacillus thuringiensis We combined experimental evolution with time-shift experiments, in which a focal host or pathogen is tested against a coevolved antagonist from the past, present, or future, followed by genomic analysis. We show that (i) coevolution occurs rapidly within few generations, (ii) temporal coadaptation at the phenotypic level is found in parallel across replicate populations, consistent with antagonistic frequency-dependent selection, (iii) genomic changes in the pathogen match the phenotypic pattern and include copy number variations of a toxin-encoding plasmid, and (iv) host genomic changes do not match the phenotypic pattern and likely involve selective responses at more than one locus. By exploring the dynamics of coevolution at the phenotypic and genomic level for both host and pathogen simultaneously, our findings demonstrate a more complex model of the Red Queen, consisting of distinct selective processes acting on the two antagonists during rapid and reciprocal coadaptation.
Assuntos
Bacillus thuringiensis/fisiologia , Evolução Biológica , Caenorhabditis/microbiologia , Interações Hospedeiro-Parasita/fisiologia , Modelos Biológicos , AnimaisRESUMO
Research on the Caenorhabditis elegans microbiota only recently started, with little known about how C. elegans acquires its microbiota. Slugs live in the same habitat as C. elegans and are known vectors for the worm. Hence, we wondered how the passage through a slug affects the C. elegans gut microbiota and whether worms can acquire bacteria from the slug. Using fluorescently labelled microbiota and 16S rRNA gene amplicon sequencing, we evaluated microbiota persistence and acquisition in C. elegans after slug passage. We compared C. elegans gut microbiomes isolated from wild-caught slugs to the microbiomes of worms after experimental slug passage to compare similarities and differences in microbiome composition. We found that microbiota persists in C. elegans while passing the slug gut and that worms simultaneously acquire additional bacteria species from the slug. Although the amplicon sequencing variant (ASV) richness of worms from the experiment did not exceed the richness of worms that naturally occur in slugs, we found a high number of shared ASVs indicating the importance of commonly associated microbiota. We demonstrate that C. elegans can take advantage of its passage through the slug by acquiring new potential microbiota without losing its native microbiota.
Assuntos
Microbioma Gastrointestinal , Gastrópodes , Microbiota , Animais , Caenorhabditis elegans/microbiologia , Gastrópodes/genética , Microbiota/genética , RNA Ribossômico 16S/genéticaRESUMO
The Caenorhabditis elegans natural microbiota isolates Pseudomonas lurida MYb11 and Pseudomonas fluorescens MYb115 protect the host against pathogens through distinct mechanisms. While P. lurida produces an antimicrobial compound and directly inhibits pathogen growth, P. fluorescens MYb115 protects the host without affecting pathogen growth. It is unknown how these two protective microbes affect host biological processes. We used a proteomics approach to elucidate the C. elegans response to MYb11 and MYb115. We found that both Pseudomonas isolates increase vitellogenin protein production in young adults, which confirms previous findings on the effect of microbiota on C. elegans reproductive timing. Moreover, the C. elegans responses to MYb11 and MYb115 exhibit common signatures with the response to other vitamin B12-producing bacteria, emphasizing the importance of vitamin B12 in C. elegans-microbe metabolic interactions. We further analyzed signatures in the C. elegans response specific to MYb11 or MYb115. We provide evidence for distinct modifications in lipid metabolism by both symbiotic microbes. We could identify the activation of host-pathogen defense responses as an MYb11-specific proteome signature and provide evidence that the intermediate filament protein IFB-2 is required for MYb115-mediated protection. These results indicate that MYb11 not only produces an antimicrobial compound but also activates host antimicrobial defenses, which together might increase resistance to infection. In contrast, MYb115 affects host processes such as lipid metabolism and cytoskeleton dynamics, which might increase host tolerance to infection. Overall, this study pinpoints proteins of interest that form the basis for additional exploration into the mechanisms underlying C. elegans microbiota-mediated protection from pathogen infection and other microbiota-mediated traits.IMPORTANCESymbiotic bacteria can defend their host against pathogen infection. While some protective symbionts directly interact with pathogenic bacteria, other protective symbionts elicit a response in the host that improves its own pathogen defenses. To better understand how a host responds to protective symbionts, we examined which host proteins are affected by two protective Pseudomonas bacteria in the model nematode Caenorhabditis elegans. We found that the C. elegans response to its protective symbionts is manifold, which was reflected in changes in proteins that are involved in metabolism, the immune system, and cell structure. This study provides a foundation for exploring the contribution of the host response to symbiont-mediated protection from pathogen infection.
Assuntos
Anti-Infecciosos , Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/microbiologia , Proteoma/metabolismo , Pseudomonas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Anti-Infecciosos/metabolismo , VitaminasRESUMO
To overcome bacterial invasion and infection, animals have evolved various antimicrobial effectors such as antimicrobial peptides and lysozymes. Although C. elegans is exposed to a variety of microbes due to its bacterivorous lifestyle, previous work on the components of its immune system mainly based on the description of transcriptional changes during bacterial challenges. Very few effector components of its immune system have been characterized so far. To investigate the role of lysozymes in terms of antibacterial defense and digestion, we studied a member of the widely neglected family of C. elegans invertebrate lysozymes (ILYS). We focused on the so far virtually undescribed ILYS-5, which we purified from protein extracts of C. elegans tracing its peptidoglycan-degrading activity and localized the tissue expression of the gene in vivo using a translational reporter construct. We recombinantly synthesized ILYS-5 and determined the physicochemical activity optimum and the antibacterial spectrum of a lysozyme from C. elegans for the first time. With an activity optimum at low ionic strength (≤100 mM) and at acidic pH (≤ pH 4.0), ILYS-5 is likely to be involved in killing and digestion of bacteria within acidified phagolysosomes and acidic regions of the gut, presumably secreted by lysosome-like vesicles. This notion is supported by potent activity against various live Gram-positive and Gram-negative bacteria. Notably, members of the natural associated microbiome of C. elegans are substantially less susceptible to ILYS-5. Ablation of the ilys-5 gene resulted in reduction of lifespan and fertility when cultured on the standard food bacterium Escherichia coli OP50, whereas exposure of the ilys-5 knock-out mutant to the host-associated bacterium Pseudomonas lurida MYb11 did not have a clear effect. These findings indicate a role of ILYS-5 in immunity and nutrition and a co-evolved adaptation of host and bacteria to the mutualistic nature of their interaction.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Muramidase , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Muramidase/metabolismo , Muramidase/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Peptidoglicano/metabolismo , Imunidade Inata , Antibacterianos/metabolismo , Antibacterianos/farmacologiaRESUMO
The gut microbiome plays important roles in host function and health. Core microbiomes have been described for different species, and imbalances in their composition, known as dysbiosis, are associated with pathology. Changes in the gut microbiome and dysbiosis are common in aging, possibly due to multi-tissue deterioration, which includes metabolic shifts, dysregulated immunity, and disrupted epithelial barriers. However, the characteristics of these changes, as reported in different studies, are varied and sometimes conflicting. Using clonal populations of Caenorhabditis elegans to highlight trends shared among individuals, we employed 16s rRNA gene sequencing, CFU counts and fluorescent imaging, identifying an Enterobacteriaceae bloom as a common denominator in aging animals. Experiments using Enterobacter hormaechei, a representative commensal, suggested that the Enterobacteriaceae bloom was facilitated by a decline in Sma/BMP immune signaling in aging animals and demonstrated its potential for exacerbating infection susceptibility. However, such detrimental effects were context-dependent, mitigated by competition with commensal communities, highlighting the latter as determinants of healthy versus unhealthy aging, depending on their ability to restrain opportunistic pathobionts.
RESUMO
The gut microbiome plays important roles in host function and health. Core microbiomes have been described for different species, and imbalances in their composition, known as dysbiosis, are associated with pathology. Changes in the gut microbiome and dysbiosis are common in aging, possibly due to multi-tissue deterioration, which includes metabolic shifts, dysregulated immunity, and disrupted epithelial barriers. However, the characteristics of these changes, as reported in different studies, are varied and sometimes conflicting. Using clonal populations of C. elegans to highlight trends shared among individuals, and employing NextGen sequencing, CFU counts and fluorescent imaging to characterize age-dependent changes in worms raised in different microbial environments, we identified an Enterobacteriaceae bloom as a common denominator in aging animals. Experiments using Enterobacter hormachei, a representative commensal, suggested that the Enterobacteriaceae bloom was facilitated by a decline in Sma/BMP immune signaling in aging animals and demonstrated its detrimental potential for increasing susceptibility to infection. However, such detrimental effects were context-dependent, mitigated by competition with commensal communities, highlighting the latter as determinants of healthy versus unhealthy aging, depending on their ability to restrain opportunistic pathobionts.
RESUMO
Gut bacteria are often described by the neutral term commensals. However, the more we learn about their interactions with hosts, the more apparent it becomes that gut commensals often contribute positively to host physiology and fitness. Whether hosts can prefer beneficial bacteria, and how they do so, is not clear. This is of particular interest in the case of the bacterivore C. elegans, which depends on bacteria as food source, but also as gut colonizers that contribute to its physiology, from development to immunity. It is further unclear to what extent worms living in their microbially-diverse habitats can sense and distinguish between beneficial bacteria, food, and pathogens. Focusing on Enterobacteriaceae and members of closely related families, we isolated gut bacteria from worms raised in compost microcosms, as well as bacteria from the respective environments and evaluated their contributions to host development. Most isolates, from worms or from the surrounding environment, promoted faster development compared to the non-colonizing E. coli food strain. Pantoea strains further showed differential contributions of gut isolates versus an environmental isolate. Characterizing bacterial ability to hinder pathogenic colonization with Pseudomonas aeruginosa, supported the trend of Pantoea gut commensals being beneficial, in contrast to the environmental strain. Interestingly, worms were attracted to the beneficial Pantoea strains, preferring them over non-beneficial bacteria, including the environmental Pantoea strain. While our understanding of the mechanisms underlying these host-microbe interactions are still rudimentary, the results suggest that hosts can sense and prefer beneficial commensals.
Assuntos
Caenorhabditis elegans , Escherichia coli , Animais , Bactérias , Caenorhabditis elegans/microbiologia , Interações entre Hospedeiro e Microrganismos , SimbioseRESUMO
The Caenorhabditis elegans natural microbiota was described only recently. Thus, our understanding of its effects on nematode physiology is still in its infancy. We previously showed that the C. elegans natural microbiota isolates Pseudomonas lurida MYb11 and P. fluorescens MYb115 protect the worm against pathogens such as Bacillus thuringiensis (Bt). However, the overall effects of the protective microbiota on worm physiology are incompletely understood. Here, we investigated how MYb11 and MYb115 affect C. elegans lifespan, fertility, and intestinal colonization. We further studied the capacity of MYb11 and MYb115 to protect the worm against purified Bt toxins. We show that while MYb115 and MYb11 affect reproductive timing and increase early reproduction only MYb11 reduces worm lifespan. Moreover, MYb11 aggravates killing upon toxin exposure. We conclude that MYb11 has a pathogenic potential in some contexts. This work thus highlights that certain C. elegans microbiota members can be beneficial and costly to the host in a context-dependent manner, blurring the line between good and bad.
Assuntos
Bacillus thuringiensis , Proteínas de Caenorhabditis elegans , Microbiota , Animais , Caenorhabditis elegans , IntestinosRESUMO
In comparison with the standard monoxenic maintenance in the laboratory, rearing the nematode Caenorhabditis elegans on its natural microbiota improves its fitness and immunity against pathogens. Although C. elegans is known to exhibit choice behavior and pathogen avoidance behavior, little is known about whether C. elegans actively chooses its (beneficial) microbiota and whether the microbiota influences worm behavior. We examined eleven natural C. elegans isolates in a multiple-choice experiment for their choice behavior toward four natural microbiota bacteria and found that microbiota choice varied among C. elegans isolates. The natural C. elegans isolate MY2079 changed its choice behavior toward microbiota isolate Ochrobactrum vermis MYb71 in both multiple-choice and binary-choice experiments, in particular on proliferating bacteria: O. vermis MYb71 was chosen less than other microbiota bacteria or OP50, but only after preconditioning with MYb71. Examining escape behavior and worm fitness on MYb71, we ruled out pathogenicity of MYb71 and consequently learned pathogen avoidance behavior as the main driver of the behavioral change toward MYb71. The change in behavior of C. elegans MY2079 toward microbiota bacterium MYb71 demonstrates how the microbiota influences the worm's choice. These results might give a baseline for future research on host-microbiota interaction in the C. elegans model.
Assuntos
Microbiota , Ochrobactrum , Animais , Bactérias , Caenorhabditis elegans , VirulênciaRESUMO
Animals and plants host diverse communities of microorganisms, and these microbiotas have been shown to influence host life history traits. Much has been said about the benefits that host-associated microbiotas bestow on the host. However, life history traits often demonstrate tradeoffs among one another. Raising Caenorhabditis elegans nematodes in compost microcosms emulating their natural environment, we examined how complex microbiotas affect host life history traits. We show that soil microbes usually increase the host development rate but decrease host resistance to heat stress, suggesting that interactions with complex microbiotas may mediate a tradeoff between host development and stress resistance. What element in these interactions is responsible for these effects is yet unknown, but experiments with live versus dead bacteria suggest that such effects may depend on bacterially provided signals.
RESUMO
The microbiota is generally assumed to have a substantial influence on the biology of multicellular organisms. The exact functional contributions of the microbes are often unclear and cannot be inferred easily from 16S rRNA genotyping, which is commonly used for taxonomic characterization of bacterial associates. In order to bridge this knowledge gap, we here analyzed the metabolic competences of the native microbiota of the model nematode Caenorhabditis elegans. We integrated whole-genome sequences of 77 bacterial microbiota members with metabolic modeling and experimental characterization of bacterial physiology. We found that, as a community, the microbiota can synthesize all essential nutrients for C. elegans. Both metabolic models and experimental analyses revealed that nutrient context can influence how bacteria interact within the microbiota. We identified key bacterial traits that are likely to influence the microbe's ability to colonize C. elegans (i.e., the ability of bacteria for pyruvate fermentation to acetoin) and affect nematode fitness (i.e., bacterial competence for hydroxyproline degradation). Considering that the microbiota is usually neglected in C. elegans research, the resource presented here will help our understanding of this nematode's biology in a more natural context. Our integrative approach moreover provides a novel, general framework to characterize microbiota-mediated functions.
Assuntos
Bactérias/metabolismo , Caenorhabditis elegans/microbiologia , Microbiota , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Caenorhabditis elegans/metabolismo , Redes e Vias Metabólicas/genéticaRESUMO
The biology of all organisms is influenced by the associated community of microorganisms. In spite of its importance, it is usually not well understood how exactly this microbiota affects host functions and what are the underlying molecular processes. To rectify this knowledge gap, we took advantage of the nematode Caenorhabditis elegans as a tractable, experimental model system and assessed the inducible transcriptome response after colonization with members of its native microbiota. For this study, we focused on two isolates of the genus Ochrobactrum. These bacteria are known to be abundant in the nematode's microbiota and are capable of colonizing and persisting in the nematode gut, even under stressful conditions. The transcriptome response was assessed across development and three time points of adult life, using general and C. elegans-specific enrichment analyses to identify affected functions. Our assessment revealed an influence of the microbiota members on the nematode's dietary response, development, fertility, immunity, and energy metabolism. This response is mainly regulated by a GATA transcription factor, most likely ELT-2, as indicated by the enrichment of (i) the GATA motif in the promoter regions of inducible genes and (ii) of ELT-2 targets among the differentially expressed genes. We compared our transcriptome results with a corresponding previously characterized proteome data set, highlighting a significant overlap in the differentially expressed genes, the affected functions, and ELT-2 target genes. Our analysis further identified a core set of 86 genes that consistently responded to the microbiota members across development and adult life, including several C-type lectin-like genes and genes known to be involved in energy metabolism or fertility. We additionally assessed the consequences of induced gene expression with the help of metabolic network model analysis, using a previously established metabolic network for C. elegans. This analysis complemented the enrichment analyses by revealing an influence of the Ochrobactrum isolates on C. elegans energy metabolism and furthermore metabolism of specific amino acids, fatty acids, and also folate biosynthesis. Our findings highlight the multifaceted impact of naturally colonizing microbiota isolates on C. elegans life history and thereby provide a framework for further analysis of microbiota-mediated host functions.
RESUMO
C-type lectin-like domain (CTLD) proteins occupy crucial functions in the immune system of vertebrates, but their role in invertebrate immunity is much less understood. The nematode Caenorhabditis elegans possesses a highly diverse CTLD protein encoding (clec) gene repertoire. A role of C. elegans clec genes in pathogen defense is always assumed, yet experimental evidence for clec immune function is rare. To systematically test the potential function of clec genes in the C. elegans defense against pathogens, we screened 39 clec mutants for survival on the Gram-positive pathogen Bacillus thuringiensis (BT18247) and 37 clec mutants on the Gram-negative pathogen Pseudomonas aeruginosa (PA14). We found that clec mutants can exhibit either decreased or, unexpectedly, increased resistance to infection. Since we observed high escape behavior for some of the clec mutants on BT18247 during the initial screen, we then asked if increased pathogen avoidance behavior underlies the increased resistance of some clec mutants. We thus tested lawn leaving behavior of the resistant clec-29(ok3181), clec-34(ok2120), clec-151(ok2264), and C54G4.4(ok2110) mutant on BT18247. We found that C54G4.4(ok2110) mutant animals exhibit a particularly strong lawn leaving behavior, in addition to prolonged feeding cessation when exposed to BT18247. Together, our results indicate that clec genes mediate both resistance and susceptibility to infection. Further, behavioral analyses of the C54G4.4(ok2110) mutant implicate C54G4.4 in the regulation of pathogen avoidance behavior towards BT18247. We conclude that C. elegans clec genes may act both as positive and negative regulators of physiological as well as behavioral immune defense responses.
Assuntos
Bacillus thuringiensis/imunologia , Infecções Bacterianas/imunologia , Comportamento Animal , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Lectinas Tipo C/genética , Mutação/genética , Infecções por Nematoides/imunologia , Domínios Proteicos/genética , Pseudomonas aeruginosa/imunologia , Animais , Proteínas de Caenorhabditis elegans/genética , Imunidade Inata , Lectinas Tipo C/metabolismoRESUMO
A key question in current immunity research is how the innate immune system can generate high levels of specificity. Evidence is accumulating that invertebrates, which exclusively rely on innate defense mechanisms, can differentiate between pathogens on the species and even strain level. In this review, we identify and discuss the particular potential of C-type lectin-like domain (CTLD) proteins to generate high immune specificity. Whilst several CTLD proteins are known to act as pattern recognition receptors in the vertebrate innate immune system, the exact role of CTLD proteins in invertebrate immunity is much less understood. We show that CTLD genes are highly abundant in most metazoan genomes and summarize the current state of knowledge on CTLD protein function in insect, crustacean and nematode immune systems. We then demonstrate extreme CTLD gene diversification in the genomes of Caenorhabditis nematodes and provide an update of data from CTLD gene function studies in C. elegans, which indicate that the diversity of CTLD genes could contribute to immune specificity. In spite of recent achievements, the exact functions of the diversified invertebrate CTLD genes are still largely unknown. Our review therefore specifically discusses promising research approaches to rectify this knowledge gap.
Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Imunidade Inata/fisiologia , Lectinas Tipo C/imunologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Lectinas Tipo C/genética , Domínios ProteicosRESUMO
The nematode Caenorhabditis elegans is a central laboratory model system in almost all biological disciplines, yet its natural life history and population biology are largely unexplored. Such information is essential for in-depth understanding of the nematode's biology because its natural ecology provides the context, in which its traits and the underlying molecular mechanisms evolved. We characterized natural phenotypic and genetic variation among North German C. elegans isolates. We used the unique opportunity to compare samples collected 10 years apart from the same compost heap and additionally included recent samples for this and a second site, collected across a 1.5-year period. Our analysis revealed significant population genetic differentiation between locations, across the 10-year time period, but for only one location a trend across the shorter time frame. Significant variation was similarly found for phenotypic traits of likely importance in nature, such as choice behavior and population growth in the presence of pathogens or naturally associated bacteria. Phenotypic variation was significantly influenced by C. elegans genotype, time of isolation, and sampling site. The here studied C. elegans isolates may provide a valuable, genetically variable resource for future dissection of naturally relevant gene functions.