Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 80(20): 9915-25, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26414427

RESUMO

A new azobenzene-based photoswitch, 2, has been designed to enable optical control of ionotropic glutamate receptors in neurons via sensitized two-photon excitation with NIR light. In order to develop an efficient and versatile synthetic route for this molecule, a modular strategy is described which relies on the use of a new linear fully protected glutamate derivative stable in basic media. The resulting compound undergoes one-photon trans-cis photoisomerization via two different mechanisms: direct excitation of its azoaromatic unit and irradiation of the pyrene sensitizer, a well-known two-photon sensitive chromophore. Moreover, 2 presents large thermal stability of its cis isomer, in contrast to other two-photon responsive switches relying on the intrinsic nonlinear optical properties of push-pull substituted azobenzenes. As a result, the molecular system developed herein is a very promising candidate for evoking large photoinduced biological responses during the multiphoton operation of neuronal glutamate receptors with NIR light, which require accumulation of the protein-bound cis state of the switch upon repeated illumination.


Assuntos
Compostos Azo/química , Receptores Ionotrópicos de Glutamato/química , Compostos Azo/síntese química , Ligantes , Estrutura Molecular , Neurônios/química , Processos Fotoquímicos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA