Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 5080, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698654

RESUMO

Paleoclimate studies play a crucial role in understanding past and future climates and their environmental impacts. Current methodologies for performing highly sensitive elemental analysis at micrometre spatial resolutions are restricted to the use of complex and/or not easily applied techniques, such as synchrotron radiation X-ray fluorescence micro-analysis (µ-SRXRF), nano secondary ion mass spectrometry (nano-SIMS) or laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Moreover, the analysis of large samples (>few cm²) with any of these methods remains very challenging due to their relatively low acquisition speed (~1-10 Hz), and because they must be operated in vacuum or controlled atmosphere. In this work, we proposed an imaging methodology based on laser-induced breakdown spectroscopy, to perform fast multi-elemental scanning of large geological samples with high performance in terms of sensitivity (ppm-level), lateral resolution (up to 10 µm) and operating speed (100 Hz). This method was successfully applied to obtain the first megapixel images of large geological samples and yielded new information, not accessible using other techniques. These results open a new perspective into the use of laser spectroscopy in a variety of geochemical applications.

2.
Sci Rep ; 6: 29936, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435424

RESUMO

Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.


Assuntos
Imageamento Tridimensional , Rim/anatomia & histologia , Lasers , Nanopartículas/química , Análise Espectral/métodos , Animais , Feminino , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA