Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(Suppl_2): ii49-ii55, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36124798

RESUMO

MOTIVATION: Tumors are the result of a somatic evolutionary process leading to substantial intra-tumor heterogeneity. Single-cell and multi-region sequencing enable the detailed characterization of the clonal architecture of tumors and have highlighted its extensive diversity across tumors. While several computational methods have been developed to characterize the clonal composition and the evolutionary history of tumors, the identification of significantly conserved evolutionary trajectories across tumors is still a major challenge. RESULTS: We present a new algorithm, MAximal tumor treeS TRajectOries (MASTRO), to discover significantly conserved evolutionary trajectories in cancer. MASTRO discovers all conserved trajectories in a collection of phylogenetic trees describing the evolution of a cohort of tumors, allowing the discovery of conserved complex relations between alterations. MASTRO assesses the significance of the trajectories using a conditional statistical test that captures the coherence in the order in which alterations are observed in different tumors. We apply MASTRO to data from nonsmall-cell lung cancer bulk sequencing and to acute myeloid leukemia data from single-cell panel sequencing, and find significant evolutionary trajectories recapitulating and extending the results reported in the original studies. AVAILABILITY AND IMPLEMENTATION: MASTRO is available at https://github.com/VandinLab/MASTRO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Evolução Clonal , Humanos , Filogenia , Software
2.
Bioinformatics ; 38(13): 3343-3350, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35583271

RESUMO

MOTIVATION: The extraction of k-mers is a fundamental component in many complex analyses of large next-generation sequencing datasets, including reads classification in genomics and the characterization of RNA-seq datasets. The extraction of all k-mers and their frequencies is extremely demanding in terms of running time and memory, owing to the size of the data and to the exponential number of k-mers to be considered. However, in several applications, only frequent k-mers, which are k-mers appearing in a relatively high proportion of the data, are required by the analysis. RESULTS: In this work, we present SPRISS, a new efficient algorithm to approximate frequent k-mers and their frequencies in next-generation sequencing data. SPRISS uses a simple yet powerful reads sampling scheme, which allows to extract a representative subset of the dataset that can be used, in combination with any k-mer counting algorithm, to perform downstream analyses in a fraction of the time required by the analysis of the whole data, while obtaining comparable answers. Our extensive experimental evaluation demonstrates the efficiency and accuracy of SPRISS in approximating frequent k-mers, and shows that it can be used in various scenarios, such as the comparison of metagenomic datasets, the identification of discriminative k-mers, and SNP (single nucleotide polymorphism) genotyping, to extract insights in a fraction of the time required by the analysis of the whole dataset. AVAILABILITY AND IMPLEMENTATION: SPRISS [a preliminary version (Santoro et al., 2021) of this work was presented at RECOMB 2021] is available at https://github.com/VandinLab/SPRISS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Análise de Sequência de DNA , Algoritmos , Genômica
3.
J Comput Biol ; 27(4): 534-549, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31891535

RESUMO

Estimating the abundances of all k-mers in a set of biological sequences is a fundamental and challenging problem with many applications in biological analysis. Although several methods have been designed for the exact or approximate solution of this problem, they all require to process the entire data set, which can be extremely expensive for high-throughput sequencing data sets. Although in some applications it is crucial to estimate all k-mers and their abundances, in other situations it may be sufficient to report only frequent k-mers, which appear with relatively high frequency in a data set. This is the case, for example, in the computation of k-mers' abundance-based distances among data sets of reads, commonly used in metagenomic analyses. In this study, we develop, analyze, and test a sampling-based approach, called Sampling Algorithm for K-mErs approxIMAtion (SAKEIMA), to approximate the frequent k-mers and their frequencies in a high-throughput sequencing data set while providing rigorous guarantees on the quality of the approximation. SAKEIMA employs an advanced sampling scheme and we show how the characterization of the Vapnik-Chervonenkis dimension, a core concept from statistical learning theory, of a properly defined set of functions leads to practical bounds on the sample size required for a rigorous approximation. Our experimental evaluation shows that SAKEIMA allows to rigorously approximate frequent k-mers by processing only a fraction of a data set and that the frequencies estimated by SAKEIMA lead to accurate estimates of k-mer-based distances between high-throughput sequencing data sets. Overall, SAKEIMA is an efficient and rigorous tool to estimate k-mers' abundances providing significant speedups in the analysis of large sequencing data sets.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Biologia Computacional , Metagenoma/genética , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA