Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Mol Cell ; 78(3): 522-538.e9, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220303

RESUMO

To understand the role of the extensive senescence-associated 3D genome reorganization, we generated genome-wide chromatin interaction maps, epigenome, replication-timing, whole-genome bisulfite sequencing, and gene expression profiles from cells entering replicative senescence (RS) or upon oncogene-induced senescence (OIS). We identify senescence-associated heterochromatin domains (SAHDs). Differential intra- versus inter-SAHD interactions lead to the formation of senescence-associated heterochromatin foci (SAHFs) in OIS but not in RS. This OIS-specific configuration brings active genes located in genomic regions adjacent to SAHDs in close spatial proximity and favors their expression. We also identify DNMT1 as a factor that induces SAHFs by promoting HMGA2 expression. Upon DNMT1 depletion, OIS cells transition to a 3D genome conformation akin to that of cells in replicative senescence. These data show how multi-omics and imaging can identify critical features of RS and OIS and discover determinants of acute senescence and SAHF formation.


Assuntos
Senescência Celular/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Genoma Humano , Oncogenes , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Fibroblastos , Heterocromatina/genética , Humanos , Hibridização in Situ Fluorescente
2.
Chromosoma ; 128(1): 1-6, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30088093

RESUMO

The recent discovery of a new class of massive chromosomal rearrangements, occurring during one unique cellular event and baptized "chromothripsis," deeply modifies our perception on the genesis of complex genomic rearrangements, but also, it raises the question of the potential driving role of chromothripsis in species evolution. Analyses of the etiology of chromothripsis have led to the identification of various cellular processes capable of generating chromothripsis, such as premature chromosome condensation, telomere dysfunction, abortive apoptosis, and micronucleus formation. All these causative mechanisms may occur in germlines or during early embryonic development, suggesting that chromothripsis could be an unexpected mechanism for profound genome modification. The occurrence of chromothripsis appears to be in good agreement with macroevolution models proposed as a complement to phyletic gradualism. Various cases of chromosomal speciation and short-term adaptation could be correlated to chromothripsis-mediated mechanism. The emergency of this unanticipated chaotic phenomenon may contribute to demonstrate the contribution of chromosome rearrangements to speciation process. New sequencing and bioinformatics methods can be expected to shed new light on the role of chromothripsis in evolutionary process.


Assuntos
Evolução Biológica , Cromotripsia , Genoma , Seleção Genética , Animais , Apoptose/genética , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Embrião de Mamíferos , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Micronúcleos com Defeito Cromossômico , Telômero/metabolismo , Telômero/patologia
3.
Reprod Biomed Online ; 39(1): 40-48, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31097322

RESUMO

RESEARCH QUESTION: To analyse why unbalanced viable offspring are derived mainly from the 3:1 segregation mode in t(11;22)(q23;q11.2) reciprocal translocation. DESIGN: Retrospective analysis of 24 pre-implantation genetic testing for chromosomal structural re-arrangements (PGT-SR) cycles was performed on seven male and five female carriers of t(11;22) translocation. Sperm analysis was performed on each male carrier. These patients were directed to the study centre after several years of miscarriages and/or abortions, primary infertility for male carriers or birth of an affected child. RESULTS: Twenty-four PGT-SR cycles were performed to exclude imbalances in both male and female carriers. The unbalanced embryos derived from the adjacent-1 segregation mode were the most represented in both male and female carriers (68.4% and 50%, respectively). These results were positively related with meiotic segregation analysis of reciprocal translocation in spermatozoa. A thorough analysis of the unbalanced embryo karyotypes determined that the expected viable +der22 karyotype resulting from 3:1 malsegregation was less represented at 5.3%. CONCLUSIONS: These findings highlight the divergence that may exist between meiotic segregation and post-zygotic selection. Post-zygotic selection would be responsible for the elimination of unbalanced embryos derived from the adjacent-1 segregation mode. The combined action of several factors occurs at the beginning of post-zygotic selection. Genetic counselling must consider the risk of a birth related to the adjacent-1 segregation mode, irrespective of the sex of the translocation carrier. These results will allow deeper understanding of the PGT results of t(11;22) carriers, which often include a high number of aneuploid embryos.


Assuntos
Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 22/genética , Padrões de Herança/genética , Diagnóstico Pré-Implantação/métodos , Translocação Genética , Adulto , Mapeamento Cromossômico/métodos , Mapeamento Cromossômico/estatística & dados numéricos , Feminino , Frequência do Gene , Triagem de Portadores Genéticos/métodos , Humanos , Hibridização in Situ Fluorescente/métodos , Hibridização in Situ Fluorescente/estatística & dados numéricos , Cariotipagem , Masculino , Gravidez , Diagnóstico Pré-Implantação/estatística & dados numéricos , Estudos Retrospectivos , Análise do Sêmen/métodos , Análise do Sêmen/estatística & dados numéricos , Translocação Genética/genética
4.
Genes Dev ; 25(21): 2248-53, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22056670

RESUMO

Direct reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) provides a unique opportunity to derive patient-specific stem cells with potential applications in tissue replacement therapies and without the ethical concerns of human embryonic stem cells (hESCs). However, cellular senescence, which contributes to aging and restricted longevity, has been described as a barrier to the derivation of iPSCs. Here we demonstrate, using an optimized protocol, that cellular senescence is not a limit to reprogramming and that age-related cellular physiology is reversible. Thus, we show that our iPSCs generated from senescent and centenarian cells have reset telomere size, gene expression profiles, oxidative stress, and mitochondrial metabolism, and are indistinguishable from hESCs. Finally, we show that senescent and centenarian-derived pluripotent stem cells are able to redifferentiate into fully rejuvenated cells. These results provide new insights into iPSC technology and pave the way for regenerative medicine for aged patients.


Assuntos
Diferenciação Celular , Reprogramação Celular , Senescência Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Rejuvenescimento , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/metabolismo , Telômero/genética , Telômero/metabolismo , Fatores de Transcrição/farmacologia
5.
Hum Reprod ; 33(8): 1381-1387, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325427

RESUMO

Chromoanasynthesis has been described as a novel cause of massive constitutional chromosomal rearrangements. Based on DNA replication machinery defects, chromoanasynthesis is characterized by the presence of chromosomal duplications and triplications locally clustered on one single chromosome, or a few chromosomes, associated with various other types of structural rearrangements. Two distinct mechanisms have been described for the formation of these chaotic genomic disorders, i.e. the fork stalling and template switching and the microhomology-mediated break-induced replication. Micronucleus-based processes have been evidenced as a causative mechanism, thus, highlighting the close connection between segregation errors and structural rearrangements. Accumulating data indicate that chromoanasynthesis is operating in human germline cells and during early embryonic development. The development of new tools for quantifying chromoanasynthesis events should provide further insight into the impact of this catastrophic cellular phenomenon in human reproduction.


Assuntos
Instabilidade Cromossômica/fisiologia , Duplicação Cromossômica/fisiologia , Cromotripsia , Genoma Humano/genética , Células Germinativas/fisiologia , Feminino , Rearranjo Gênico , Humanos , Masculino , Gravidez , Técnicas de Reprodução Assistida
6.
Am J Med Genet A ; 167A(12): 3031-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26333717

RESUMO

Intellectual disability (ID) is a frequent feature but is highly clinically and genetically heterogeneous. The establishment of the precise diagnosis in patients with ID is challenging due to this heterogeneity but crucial for genetic counseling and appropriate care for the patients. Among the etiologies of patients with ID, apparently balanced de novo rearrangements represent 0.6%. Several mechanisms explain the ID in patients with apparently balanced de novo rearrangement. Among them, disruption of a disease gene at the breakpoint, is frequently evoked. In this context, technologies recently developed are used to characterize precisely such chromosomal rearrangements. Here, we report the case of a boy with ID, facial features and autistic behavior who is carrying a de novo balanced reciprocal translocation t(3;7)(q11.2;q11.22)dn. Using microarray analysis, array painting (AP) technology combined with molecular study, we have identified the interruption of the autism susceptibility candidate 2 gene (AUTS2) and EPH receptor A6 gene (EPHA6). We consider that the disruption of AUTS2 explains the phenotype of the patient; the exact role of EPHA6 in human pathology is not well defined. Based on the observation of recurrent germinal and somatic translocations involving AUTS2 and the molecular environment content, we put forward the hypothesis that the likely chromosomal mechanism responsible for the translocation could be due either to replicative stress or to recombination-based mechanisms.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Receptor EphA6/genética , Translocação Genética , Sequência de Bases , Criança , Coloração Cromossômica/métodos , Cromossomos Humanos Par 3 , Cromossomos Humanos Par 7 , Proteínas do Citoesqueleto , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Gravidez , Fatores de Transcrição
7.
Hum Reprod ; 29(3): 388-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24452388

RESUMO

The recent discovery of a new kind of massive chromosomal rearrangement, baptized chromothripsis (chromo for chromosomes, thripsis for shattering into pieces), greatly modifies our understanding of molecular mechanisms implicated in the repair of DNA damage and the genesis of complex chromosomal rearrangements. Initially described in cancers, and then in constitutional rearrangements, chromothripsis is characterized by the shattering of one (or a few) chromosome(s) segments followed by a chaotic reassembly of the chromosomal fragments, occurring during one unique cellular event. The diversity and the high complexity of chromothripsis events raise questions about their origin, their ties to chromosome instability and their impact in pathology. Several causative mechanisms, involving abortive apoptosis, telomere erosion, mitotic errors, micronuclei formation and p53 inactivation, have been proposed. The remarkable point is that all these mechanisms have been identified in the field of human reproduction as causal factors for reproductive failures and chromosomal abnormalities. Consequently, it seems important to consider this unexpected catastrophic phenomenon in the context of fertilization and early embryonic development in order to discuss its potential impact on human reproduction.


Assuntos
Instabilidade Cromossômica , Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Genoma Humano , Reprodução/genética , Reparo do DNA/fisiologia , Replicação do DNA/genética , Humanos
8.
Med Sci (Paris) ; 30(3): 266-73, 2014 Mar.
Artigo em Francês | MEDLINE | ID: mdl-24685217

RESUMO

The recent discovery of a new kind of massive chromosomal rearrangement in different cancers, named "chromothripsis" (chromo for chromosome, thripsis for shattering) has questioned the established models for a progressive development of tumors. Indeed, this phenomenon, which is characterized by the shattering of one (or a few) chromosome segments followed by a random reassembly of the fragments generated, occurs during one unique cellular event. The same phenomenon was identified in constitutional genetics in patients with various developmental pathologies, indicating that chromothripsis also occurs at the germ cell level. Diverse situations can cause chromothripsis (radiations, telomere erosion, abortive apoptosis, etc.), and two express "repair routes" are used by the cell to chaotically reorganise the chromosomal regions concerned: non-homologous end-joining and repair by replicative stress. The in-depth analysis of the DNA sequences involved in the regions of chromothripsis leads to a better understanding of the molecular basis of chromothripsis and also helps to better apprehend its unexpected role in the development of constitutional pathologies and the progression of cancers.


Assuntos
Aberrações Cromossômicas , Fragmentação do DNA , Apoptose/genética , Análise Citogenética , Reparo do DNA por Junção de Extremidades/fisiologia , Humanos , Neoplasias/genética
9.
Med Sci (Paris) ; 30(1): 55-63, 2014 Jan.
Artigo em Francês | MEDLINE | ID: mdl-24472460

RESUMO

Complex chromosomal rearrangements (CCR) include diverse structural anomalies leading to complex karyotypes which are difficult to interpret. Although karyotype analysis has been able to identify a large number of these rearrangements and to distinguish de novo and familial events, it is the advent of molecular cytogenetic and sequence analysis techniques which have led to an understanding of the molecular mechanisms underlying the formation of CCR. The diversity and high level of complexity inherent to CCR raises questions about their origin, their ties to chromosome instability and their impact in pathology. Today it is possible to precisely characterize CCR and to offer carriers sophisticated diagnostic techniques, such as preimplantation diagnosis. However, the meiotic segregation of these rearrangements remains very complex.


Assuntos
Instabilidade Cromossômica/fisiologia , Aberrações Cromossômicas , Translocação Genética/fisiologia , Animais , Aberrações Cromossômicas/classificação , Aberrações Cromossômicas/estatística & dados numéricos , Análise Citogenética/métodos , Análise Citogenética/tendências , Fertilidade/genética , Humanos
10.
Eur J Hum Genet ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014012

RESUMO

Single-gene copy number variants (CNVs) limited to placenta although rarely identified may have clinical implications. We describe a pregnant woman referred for chorionic villus sampling due to increased fetal nuchal translucency. Incident intragenic deletion of Duchenne muscular dystrophy (DMD) gene, affecting exons 56 and 57, was identified in a male fetus in ~23-30% of placental cells by chromosomal microarray and confirmed using multiplex ligation-dependent probe amplification (MLPA). Rapid aneuploidy testing showed normal results and the deletion was not detected in the mother. Subsequent analyses on amniotic cells yielded a normal DMD gene result, corroborating the confined placental nature of the mosaicism. Hence, this report emphasizes the importance of conducting amniocentesis following detection of mosaicism for single gene CNVs on chorionic villi, in order to preclude confined placental mosaicism (CPM). As far as we know, this report marks only the second documented situation of CPM involving an intragenic DMD deletion.

11.
Cells ; 12(16)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37626925

RESUMO

The factors influencing mother-to-child cell trafficking and persistence over children's lives have yet to be established. The quantification of maternal microchimerism was previously reported through HLA-based approaches, which introduced bias regarding the tolerogenic environment. We aimed to identify cells of maternal origin irrespective of the HLA repertoire and to ascertain the determinants of microchimeric cells. This case-control study enrolled 40 male infants attending pediatric surgery from January 2022 to October 2022. Female cells were quantified in infants' tonsil tissue by using cytogenetic fluorescent in situ hybridization (FISH) coupled with optimized automated microscopy. Out of the 40 infants, half (47.4%) had been breastfed for more than one month, a quarter for less a month, and 10 children (26.3%) were never breastfed. XX cells were observed in male tonsils in two-thirds of participants at a median density of 5 cells per 100,000 cells. In univariate analyses, child age was negatively associated with a high female cell density. In exploratory multivariate analyses, previous breastfeeding is a likely determinant of the persistence of these cells in the host, as well as the rank among siblings. Part of the benefit of breastmilk for child health may therefore be driven by breastfeeding-related microchimerism.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Tonsila Palatina , Feminino , Masculino , Humanos , Estudos de Casos e Controles , Hibridização in Situ Fluorescente , Leite Humano
12.
Haematologica ; 97(4): 622-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22102711

RESUMO

BACKGROUND: Genetic abnormalities are common in patients with multiple myeloma, and may deregulate gene products involved in tumor survival, proliferation, metabolism and drug resistance. In particular, translocations may result in a high expression of targeted genes (termed spike expression) in tumor cells. We identified spike genes in multiple myeloma cells of patients with newly-diagnosed myeloma and investigated their prognostic value. DESIGN AND METHODS: Genes with a spike expression in multiple myeloma cells were picked up using box plot probe set signal distribution and two selection filters. RESULTS: In a cohort of 206 newly diagnosed patients with multiple myeloma, 2587 genes/expressed sequence tags with a spike expression were identified. Some spike genes were associated with some transcription factors such as MAF or MMSET and with known recurrent translocations as expected. Spike genes were not associated with increased DNA copy number and for a majority of them, involved unknown mechanisms. Of spiked genes, 36.7% clustered significantly in 149 out of 862 documented chromosome (sub)bands, of which 53 had prognostic value (35 bad, 18 good). Their prognostic value was summarized with a spike band score that delineated 23.8% of patients with a poor median overall survival (27.4 months versus not reached, P<0.001) using the training cohort of 206 patients. The spike band score was independent of other gene expression profiling-based risk scores, t(4;14), or del17p in an independent validation cohort of 345 patients. CONCLUSIONS: We present a new approach to identify spike genes and their relationship to patients' survival.


Assuntos
Perfilação da Expressão Gênica , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Translocação Genética , Análise por Conglomerados , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Mieloma Múltiplo/mortalidade , Prognóstico
13.
J Mol Diagn ; 24(7): 719-726, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580751

RESUMO

Titin protein is responsible for muscle elasticity. The TTN gene, composed of 364 exons, is subjected to extensive alternative splicing and leads to different isoforms expressed in skeletal and cardiac muscle. Variants in TTN are responsible for myopathies with a wide phenotypic spectrum and autosomal dominant or recessive transmission. The I-band coding domain, highly subject to alternative splicing, contains a three-zone block of repeated sequences with 99% homology. Sequencing and localization of variants in these areas are complex when using short-reads sequencing, a second-generation sequencing technique. We have implemented a protocol based on the third-generation sequencing technology (long-reads sequencing). This new method allows us to localize variants in these repeated areas to improve the diagnosis of TTN-related myopathies and offer the analysis of relatives in postnatal or in prenatal screening.


Assuntos
Doenças Musculares , Processamento Alternativo/genética , Conectina/genética , Éxons/genética , Humanos , Doenças Musculares/genética , Isoformas de Proteínas/genética
14.
Mol Cytogenet ; 13: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32010222

RESUMO

Over the last decade, new types of massive and complex chromosomal rearrangements based on the chaotic shattering and restructuring of chromosomes have been identified in cancer cells as well as in patients with congenital diseases and healthy individuals. These unanticipated phenomena are named chromothripsis, chromoanasynthesis and chromoplexy, and are grouped under the term of chromoanagenesis. As mechanisms for rapid and profound genome modifications in germlines and early development, these processes can be regarded as credible pathways for genomic evolution and speciation process. Their discovery confirms the importance of genome-centric investigations to fully understand organismal evolution. Because they oppose the model of progressive acquisition of driver mutations or rearrangements, these phenomena conceptually give support to the concept of macroevolution, known through the models of "Hopeful Monsters" and the "Punctuated Equilibrium". In this review, we summarize mechanisms underlying chromoanagenesis processes and we show that numerous cases of chromosomal speciation and short-term adaptation could be correlated to chromoanagenesis-related mechanisms. In the frame of a modern and integrative analysis of eukaryote evolutionary processes, it seems important to consider the unexpected chromoanagenesis phenomena.

15.
Stem Cell Res ; 45: 101807, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32416578

RESUMO

Rothmund-Thomson Syndrome (RTS) is a rare autosomal recessive disease that manifests several clinical features of accelerated aging. These findings include atrophic skin and pigment changes, alopecia, osteopenia, cataracts, and an increased incidence of cancer for patients. Mutations in RECQL4 gene are responsible for cases of RTS. RECQL4 belongs to the RECQ DNA helicase family which has been shown to participate in many aspects of DNA metabolism. To be able to study the cellular defects related to the pathology, we derived an induced pluripotent cell line from RTS patient fibroblasts, with the ability to re-differentiate into the three embryonic germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Rothmund-Thomson , Anormalidades da Pele , Fibroblastos , Humanos , Mutação , Síndrome de Rothmund-Thomson/genética
16.
Stem Cell Res ; 43: 101696, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31918214

RESUMO

Bloom syndrome is characterized by severe pre- and postnatal growth deficiency, immune abnormalities, sensitivity to sunlight, insulin resistance, and a high risk for many cancers that occur at an early age. The diagnosis is established on characteristic clinical features and/or presence of biallelic pathogenic variants in the BLM gene. An increased frequency of sister-chromatid exchanges is also observed and can be useful to diagnose BS patients with weak or no clinical features. For the first time, we derived an induced pluripotent cell line from a Bloom syndrome patient retaining the specific sister-chromatid exchange feature as a unique tool to model the pathology.


Assuntos
Síndrome de Bloom/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Troca de Cromátide Irmã/genética , Adolescente , Animais , Feminino , Humanos
17.
Front Genet ; 11: 623, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714370

RESUMO

Usher type 1 syndrome is a rare autosomal recessive disorder involving congenital severe-to-profound hearing loss, development of vision impairment in the first decade, and severe balance difficulties. The PCDH15 gene, one of the five genes implicated in this disease, is involved in 8-20% of cases. In this study, we aimed to identify and characterize the two causal variants in a French patient with typical Usher syndrome clinical features. Massively parallel sequencing-based gene panel and screening for large rearrangements were used, which detected a single multi-exon deletion in the PCDH15 gene. As the second pathogenic event was likely localized in the unscreened regions of the gene, PCDH15 transcripts from cultured nasal cells were analyzed and revealed a loss of junction between exon 13 and exon 14. This aberration could be explained by the identification of two fusion transcripts, PCDH15-LINC00844 and BICC1-PCDH15, originating from a 4.6 Mb inversion. This complex chromosomal rearrangement could not be detected by our diagnostic approach but was instead characterized by long-read sequencing, which offers the possibility of detecting balanced structural variants (SVs). This finding extends our knowledge of the mutational spectrum of the PCDH15 gene with the first ever identification of a large causal paracentric inversion of chromosome 10 and illustrates the utility of screening balanced SVs in an exhaustive molecular diagnostic approach.

18.
Reprod Biomed Online ; 18(5): 671-3, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19549446

RESUMO

This case reports a successful live birth by intracytoplasmic sperm injection (ICSI) following human follicular fluid (HFF) centrifugation for oocyte retrieval in the modified natural cycle of a poor responder patient. A 37-year-old patient presenting with a severe ovarian defect underwent a modified natural cycle with HFF centrifugation prior to ICSI. As there was only one oocyte under direct binocular observation, HFF was centrifuged and a second oocyte was collected. ICSI was performed on both oocytes. Embryo quality and outcome were not compromised by HFF centrifugation. A live birth was achieved in April 2008. In a modified natural cycle, HFF centrifugation avoided loss of oocytes, optimized the IVF treatment, and achieved the development of two embryos.


Assuntos
Centrifugação/métodos , Líquido Folicular/citologia , Recuperação de Oócitos/métodos , Adulto , Feminino , Humanos , Gravidez , Resultado da Gravidez , Injeções de Esperma Intracitoplásmicas
19.
Mol Cytogenet ; 12: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805029

RESUMO

BACKGROUND: During the last decade, genome sequencing projects in cancer genomes as well as in patients with congenital diseases and healthy individuals have led to the identification of new types of massive chromosomal rearrangements arising during single chaotic cellular events. These unanticipated catastrophic phenomenon are termed chromothripsis, chromoanasynthesis and chromoplexis., and are grouped under the name of "chromoanagenesis". RESULTS: For each process, several specific features have been described, allowing each phenomenon to be distinguished from each other and to understand its mechanism of formation and to better understand its aetiology. Thus, chromothripsis derives from chromosome shattering followed by the random restitching of chromosomal fragments with low copy-number change whereas chromoanasynthesis results from erroneous DNA replication of a chromosome through serial fork stalling and template switching with variable copy-number gains, and chromoplexy refers to the occurrence of multiple inter-and intra-chromosomal translocations and deletions with little or no copy-number alterations in prostate cancer. Cumulating data and experimental models have shown that chromothripsis and chromoanasynthesis may essentially result from lagging chromosome encapsulated in micronuclei or telomere attrition and end-to-end telomere fusion. CONCLUSION: The concept of chromanagenesis has provided new insight into the aetiology of complex structural rearrangements, the connection between defective cell cycle progression and genomic instability, and the complexity of cancer evolution. Increasing reported chromoanagenesis events suggest that these chaotic mechanisms are probably much more frequent than anticipated.

20.
Stem Cell Res ; 39: 101515, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31404747

RESUMO

Werner syndrome (WS) is a rare human autosomal recessive disorder characterized by early onset of aging-associated diseases, chromosomal instability, and cancer predisposition, without therapeutic treatment solution. Major clinical symptoms of WS include common age-associated diseases, such as insulin-resistant diabetes mellitus, and atherosclerosis. WRN, the gene responsible for the disease, encodes a RECQL-type DNA helicase with a role in telomere metabolism. We derived a stable iPSC line from 53 years old patient's PBMC, with a normal karyotype, but exhibiting a short telomere length, as a major aspect of the cellular phenotype involved in the pathology.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Leucócitos Mononucleares/citologia , Síndrome de Werner/genética , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , Predisposição Genética para Doença/genética , Humanos , Cariotipagem , Leucócitos Mononucleares/metabolismo , Repetições de Microssatélites/genética , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA