RESUMO
Although it is well known that aluminum (Al) resistance in wheat (Triticum aestivum) is multigenic, physiological evidence for multiple mechanisms of Al resistance has not yet been documented. The role of root apical phosphate and malate exudation in Al resistance was investigated in two wheat cultivars (Al-resistant Atlas and Al-sensitive Scout) and two near-isogenic lines (Al-resistant ET3 and Al-sensitive ES3). In Atlas Al resistance is multigenic, whereas in ET3 resistance is conditioned by the single Alt1 locus. Based on root- growth experiments, Atlas was found to be 3-fold more resistant in 20 [mu]M Al than ET3. Root-exudation experiments were conducted under sterile conditions; a large malate efflux localized to the root apex was observed only in Atlas and in ET3 and only in the presence of Al (5 and 20 [mu]M). Furthermore, the more Al-resistant Atlas exhibited a constitutive phosphate release localized to the root apex. As predicted from the formation constants for the Al-malate and Al-phosphate complexes, the addition of either ligand to the root bathing solution alleviated Al inhibition of root growth in Al-sensitive Scout. These results provide physiological evidence that Al resistance in Atlas is conditioned by at least two genes. In addition to the alt locus that controls Al-induced malate release from the root apex, other genetic loci appear to control constitutive phosphate release from the apex. We suggest that both exudation processes act in concert to enhance Al exclusion and Al resistance in Atlas.
RESUMO
The role of Al interactions with root-cell plasma membrane (PM) Ca2+ channels in Al toxicity and resistance was studied. The experimental approach involved the imposition of a transmembrane electrical potential (via K+ diffusion) in right-side-out PM vesicles derived from roots of two wheat (Triticum aestivum L.) cultivars (Al-sensitive Scout 66 and Al-resistant Atlas 66). We previously used this technique to characterize a voltage-dependent Ca2+ channel in the wheat root PM (J.W. Huang, D.L. Grunes, L.V. Kochian [1994] Proc Natl Acad Sci USA 91: 3473-3477). We found that Al3+ effectively blocked this PM Ca2+ channel; however, Al3+ blocked this Ca2+ channel equally well in both the Al-sensitive and -resistant cultivars. It was found that the differential genotypic sensitivity of this Ca2+ transport system to Al in intact roots versus isolated PM vesicles was due to Al-induced malate exudation localized to the root apex in Al-resistant Atlas but not in Al-sensitive Scout. Because malate can effectively chelate Al3+ in the rhizosphere and exclude it from the root apex, the differential sensitivity of Ca2+ influx to Al in intact roots of Al-resistant versus Al-sensitive wheat cultivars is probably due to the maintenance of lower Al3+ activities in the root apical rhizosphere of the resistant cultivar.