RESUMO
BACKGROUND: Despite recent progress, multiple myeloma remains incurable. Mezigdomide is a novel cereblon E3 ubiquitin ligase modulator with potent antiproliferative and tumoricidal activity in preclinical models of multiple myeloma, including those resistant to lenalidomide and pomalidomide. METHODS: In this phase 1-2 study, we administered oral mezigdomide in combination with dexamethasone to patients with relapsed and refractory myeloma. The primary objectives of phase 1 (dose-escalation cohort) were to assess safety and pharmacokinetics and to identify the dose and schedule for phase 2. In phase 2 (dose-expansion cohort), objectives included the assessment of the overall response (partial response or better), safety, and efficacy of mezigdomide plus dexamethasone at the dose and schedule determined in phase 1. RESULTS: In phase 1, a total of 77 patients were enrolled in the study. The most common dose-limiting toxic effects were neutropenia and febrile neutropenia. On the basis of the phase 1 findings, investigators determined the recommended phase 2 dose of mezigdomide to be 1.0 mg, given once daily in combination with dexamethasone for 21 days, followed by 7 days off, in each 28-day cycle. In phase 2, a total of 101 patients received the dose identified in phase 1 in the same schedule. All patients in the dose-expansion cohort had triple-class-refractory multiple myeloma, 30 patients (30%) had received previous anti-B-cell maturation antigen (anti-BCMA) therapy, and 40 (40%) had plasmacytomas. The most common adverse events, almost all of which proved to be reversible, included neutropenia (in 77% of the patients) and infection (in 65%; grade 3, 29%; grade 4, 6%). No unexpected toxic effects were encountered. An overall response occurred in 41% of the patients (95% confidence interval [CI], 31 to 51), the median duration of response was 7.6 months (95% CI, 5.4 to 9.5; data not mature), and the median progression-free survival was 4.4 months (95% CI, 3.0 to 5.5), with a median follow-up of 7.5 months (range, 0.5 to 21.9). CONCLUSIONS: The all-oral combination of mezigdomide plus dexamethasone showed promising efficacy in patients with heavily pretreated multiple myeloma, with treatment-related adverse events consisting mainly of myelotoxic effects. (Funded by Celgene, a Bristol-Myers Squibb Company; CC-92480-MM-001 ClinicalTrials.gov number, NCT03374085; EudraCT number, 2017-001236-19.).
Assuntos
Antineoplásicos , Dexametasona , Mieloma Múltiplo , Ubiquitina-Proteína Ligases , Humanos , Anticorpos , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Dexametasona/uso terapêutico , Lenalidomida/efeitos adversos , Mieloma Múltiplo/tratamento farmacológico , Neutropenia/induzido quimicamente , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Administração Oral , RecidivaRESUMO
AIMS: A parent-metabolite population pharmacokinetic (popPK) model of iberdomide and its pharmacologically active metabolite (M12) was developed and the influence of demographic and disease-related covariates on popPK parameters was assessed based on data from 3 clinical studies of iberdomide (dose range, 0.1-6 mg) in healthy subjects (n = 81) and patients with relapsed and refractory multiple myeloma (n 245). METHODS: Nonlinear mixed effects modelling was used to develop the popPK model based on data from 326 subjects across 3 clinical studies. RESULTS: The pharmacokinetics (PK) of iberdomide were adequately described with a 2-compartment model with first-order absorption and elimination. A first-order conversion rate was used to link the 1-compartment linear elimination metabolite model with the parent model. Subject type (multiple myeloma patients vs. healthy subject) was a statistically significant covariate on apparent clearance and apparent volume of distribution for the central compartment, suggesting different PK between patients with multiple myeloma and healthy subjects. Aspartate aminotransferase and sex were statistically but not clinically relevant covariates on apparent clearance. Metabolite (M12) PK tracked the PK of iberdomide. The metabolite to parent ratio was consistent across doses and combinations. CONCLUSION: The parent-metabolite population PK model adequately described the time course PK data of iberdomide and M12. Iberdomide and M12 PK exposure were not complicated by demographic factors (age [19-82 y], body weight [41-172 kg], body surface area [1.4-2.7 m2 ], body mass index [16.4-59.3 kg/m2 ]), combination (in combination with dexamethasone and daratumumab), mild hepatic, or mild and moderate renal impairments. The model can be used to guide the dosing strategy for special patient population and inform future iberdomide study design.
Assuntos
Mieloma Múltiplo , Humanos , Voluntários Saudáveis , Índice de Massa Corporal , Peso Corporal , Modelos BiológicosRESUMO
Early life exposure to Endocrine Disruptor Chemicals (EDCs), such as the organophosphate pesticide Chlorpyrifos (CPF), affects the thyroid activity and dependent process, including the glucose metabolism. The damage of thyroid hormones (THs) as a mechanism of action of CPF is underestimated because the studies rarely consider that TH levels and signaling are customized peripherally. Here, we investigated the impairment of metabolism/signaling of THs and lipid/glucose metabolism in the livers of 6-month-old mice, developmentally and lifelong exposed to 0.1, 1, and 10 mg/kg/die CPF (F1) and their offspring similarly exposed (F2), analyzing the levels of transcripts of the enzymes involved in the metabolism of T3 (Dio1), lipids (Fasn, Acc1), and glucose (G6pase, Pck1). Both processes were altered only in F2 males, affected by hypothyroidism and by a systemic hyperglycemia linked to the activation of gluconeogenesis in mice exposed to 1 and 10 mg/kg/die CPF. Interestingly, we observed an increase in active FOXO1 protein due to a decrease in AKT phosphorylation, despite insulin signaling activation. Experiments in vitro revealed that chronic exposure to CPF affected glucose metabolism via the direct modulation of FOXO1 activity and T3 levels in hepatic cells. In conclusion, we described different sex and intergenerational effects of CPF exposure on the hepatic homeostasis of THs, their signaling, and, finally, glucose metabolism. The data points to FOXO1-T3-glucose signaling as a target of CPF in liver.
Assuntos
Clorpirifos , Hiperglicemia , Animais , Masculino , Camundongos , Clorpirifos/metabolismo , Glucose/metabolismo , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Fígado/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Iodotironina Desiodinase Tipo IIRESUMO
OBJECTIVE: We evaluated the efficacy and safety of pomalidomide, bortezomib, and dexamethasone (PVd) vs bortezomib and dexamethasone (Vd) by age, renal function, and high-risk cytogenetic abnormalities in lenalidomide-pretreated patients with multiple myeloma at first relapse. METHODS: OPTIMISMM was a phase 3, multicenter, open-label, randomized study (NCT01734928; N = 559). The primary endpoint was progression-free survival (PFS). RESULTS: Overall, 226 patients had received one prior line of therapy. PVd significantly prolonged PFS vs Vd in patients aged ≤65 years (median, 22.0 vs 13.1 months; P = .0258) and >65 years (median, 17.6 vs 9.9 months; P = .0369). Median PFS in patients with renal impairment (RI; creatinine clearance <60 mL/min) was 15.1 months with PVd vs 9.5 months with Vd (hazard ratio [HR], 0.67 [95% CI, 0.34-1.34]). In patients without RI, median PFS was 22.0 vs 13.1 months (HR, 0.45 [95% CI, 0.27-0.76]). In patients with high-risk cytogenetics, median PFS was 14.7 vs 9.9 months (HR, 0.39 [95% CI, 0.13-1.17]). PVd significantly improved overall response rate vs Vd in all subgroups. The safety profile of PVd was consistent with previous reports. CONCLUSIONS: These findings confirmed the benefits of PVd at first relapse, including in patients with poor prognostic factors.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bortezomib/administração & dosagem , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lenalidomida/uso terapêutico , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Prognóstico , Recidiva , Retratamento , Talidomida/administração & dosagem , Talidomida/análogos & derivados , Resultado do TratamentoRESUMO
In the phase 3 OPTIMISMM trial, pomalidomide, bortezomib and dexamethasone (PVd) significantly improved the progression-free survival (PFS) and the overall response rate (ORR) vs bortezomib and dexamethasone (Vd) in patients with relapsed or refractory multiple myeloma. All patients were previously treated with lenalidomide (70% refractory to lenalidomide) and had received one to three prior regimens. Here we report the first efficacy and safety analysis of PVd vs Vd in Japanese patients with relapsed or refractory multiple myeloma. Seventeen patients enrolled in the OPTIMISMM trial in Japan. With a median follow-up of 14.8 months, the median PFS was 17.6 months with PVd (n = 12) vs 4.4 months with Vd (n = 5), and the ORR was 100% vs 60.0%, respectively. The safety profile was as expected for PVd. Toxicities were managed with dose reductions and interruptions, and no patients discontinued PVd due to treatment-emergent adverse events. These results are consistent with those in the overall OPTIMISMM patient population and confirm the clinical benefit of PVd in Japanese patients.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Bortezomib/administração & dosagem , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Intervalo Livre de Progressão , Talidomida/administração & dosagem , Talidomida/análogos & derivados , Resultado do TratamentoRESUMO
BACKGROUND: As lenalidomide becomes increasingly established for upfront treatment of multiple myeloma, patients refractory to this drug represent a population with an unmet need. The combination of pomalidomide, bortezomib, and dexamethasone has shown promising results in phase 1/2 trials of patients with relapsed or refractory multiple myeloma. We aimed to assess the efficacy and safety of this triplet regimen in patients with relapsed or refractory multiple myeloma who previously received lenalidomide. METHODS: We did a randomised, open-label, phase 3 trial at 133 hospitals and research centres in 21 countries. We enrolled patients (aged ≥18 years) with a diagnosis of multiple myeloma and measurable disease, an Eastern Cooperative Oncology Group performance status of 0-2, who received one to three previous regimens, including a lenalidomide-containing regimen for at least two consecutive cycles. We randomly assigned patients (1:1) to bortezomib and dexamethasone with or without pomalidomide using a permutated blocked design in blocks of four, stratified according to age, number of previous regimens, and concentration of ß2 microglobulin at screening. Bortezomib (1·3 mg/m2) was administered intravenously until protocol amendment 1 then either intravenously or subcutaneously on days 1, 4, 8, and 11 for the first eight cycles and subsequently on days 1 and 8. Dexamethasone (20 mg [10 mg if age >75 years]) was administered orally on the same days as bortezomib and the day after. Patients allocated pomalidomide received 4 mg orally on days 1-14. Treatment cycles were every 21 days. The primary endpoint was progression-free survival in the intention-to-treat population, as assessed by an independent review committee. Safety was assessed in all patients who received at least one dose of study medication. This trial is registered at ClinicalTrials.gov, number NCT01734928; patients are no longer being enrolled. FINDINGS: Between Jan 7, 2013, and May 15, 2017, 559 patients were enrolled. 281 patients were assigned pomalidomide, bortezomib, and dexamethasone and 278 were allocated bortezomib and dexamethasone. Median follow-up was 15·9 months (IQR 9·9-21·7). Pomalidomide, bortezomib, and dexamethasone significantly improved progression-free survival compared with bortezomib and dexamethasone (median 11·20 months [95% CI 9·66-13·73] vs 7·10 months [5·88-8·48]; hazard ratio 0·61, 95% CI 0·49-0·77; p<0·0001). 278 patients received at least one dose of pomalidomide, bortezomib, and dexamethasone and 270 patients received at least one dose of bortezomib and dexamethasone, and these patients were included in safety assessments. The most common grade 3 or 4 treatment-emergent adverse events were neutropenia (116 [42%] of 278 patients vs 23 [9%] of 270 patients; nine [3%] vs no patients had febrile neutropenia), infections (86 [31%] vs 48 [18%]), and thrombocytopenia (76 [27%] vs 79 [29%]). Serious adverse events were reported in 159 (57%) of 278 patients versus 114 (42%) of 270 patients. Eight deaths were related to treatment; six (2%) were recorded in patients who received pomalidomide, bortezomib, and dexamethasone (pneumonia [n=2], unknown cause [n=2], cardiac arrest [n=1], cardiorespiratory arrest [n=1]) and two (1%) were reported in patients who received bortezomib and dexamethasone (pneumonia [n=1], hepatic encephalopathy [n=1]). INTERPRETATION: Patients with relapsed or refractory multiple myeloma who previously received lenalidomide had significantly improved progression-free survival when treated with pomalidomide, bortezomib, and dexamethasone compared with bortezomib and dexamethasone. Adverse events accorded with the individual profiles of pomalidomide, bortezomib, and dexamethasone. This study supports use of pomalidomide, bortezomib, and dexamethasone as a treatment option in patients with relapsed or refractory multiple myeloma who previously received lenalidomide. FUNDING: Celgene.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Terapia de Salvação , Adolescente , Adulto , Idoso , Bortezomib/administração & dosagem , Dexametasona/administração & dosagem , Feminino , Seguimentos , Humanos , Lenalidomida/administração & dosagem , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/patologia , Prognóstico , Taxa de Sobrevida , Talidomida/administração & dosagem , Talidomida/análogos & derivados , Adulto JovemRESUMO
Patients with relapsed and/or refractory multiple myeloma (RRMM) have poor prognosis. The STRATUS study assessed safety and efficacy of pomalidomide plus low-dose dexamethasone in the largest cohort to date of patients with RRMM. Patients who failed treatment with bortezomib and lenalidomide and had adequate prior alkylator therapy were eligible. Pomalidomide 4 mg was given on days 1-21 of 28-day cycles with low-dose dexamethasone 40 mg (20 mg for patients aged >75 years) on days 1, 8, 15, and 22 until progressive disease or unacceptable toxicity. Safety was the primary end point; secondary end points included overall response rate (ORR), duration of response (DOR), progression-free survival (PFS), and overall survival (OS). Among 682 patients enrolled, median age was 66 years, and median time since diagnosis was 5.3 years. Median number of prior regimens was 5. Most patients were refractory to both lenalidomide and bortezomib (80.2%). Median follow-up was 16.8 months; median duration of treatment was 4.9 months. Most frequent grade 3/4 treatment-emergent adverse events were hematologic (neutropenia [49.7%], anemia [33.0%], and thrombocytopenia [24.1%]). Most common grade 3/4 nonhematologic toxicities were pneumonia (10.9%) and fatigue (5.9%). Grade 3/4 venous thromboembolism and peripheral neuropathy were rare (1.6% each). The ORR was 32.6%, and the median DOR was 7.4 months. Median PFS and OS were 4.6 months and 11.9 months, respectively. We present the largest trial to date evaluating pomalidomide plus low-dose dexamethasone in patients with RRMM, further confirming that this regimen offers clinically meaningful benefit and is generally well tolerated. www.Clinicaltrials.gov identifier NCT01712789.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Talidomida/administração & dosagem , Talidomida/efeitos adversos , Talidomida/análogos & derivadosRESUMO
Iberdomide is a next-generation cereblon (CRBN)-modulating agent in the clinical development in multiple myeloma (MM). The analysis of biomarker samples from relapsed/refractory patients enrolled in CC-220-MM-001 (ClinicalTrials.gov: NCT02773030), a phase 1/2 study, shows that iberdomide treatment induces significant target substrate degradation in tumors, including in immunomodulatory agent (IMiD)-refractory patients or those with low CRBN levels. Additionally, some patients with CRBN genetic dysregulation who responded to iberdomide have a similar median progression-free survival (PFS) (10.9 months) and duration of response (DOR) (9.5 months) to those without CRBN dysregulation (11.2 month PFS, 9.4 month DOR). Iberdomide treatment promotes a cyclical pattern of immune stimulation without causing exhaustion, inducing a functional shift in T cells toward an activated/effector memory phenotype, including in triple-class refractory patients and those receiving IMiDs as a last line of therapy. This analysis demonstrates that iberdomide's clinical mechanisms of action are driven by both its cell-autonomous effects overcoming CRBN dysregulation in MM cells, and potent immune stimulation that augments anti-tumor immunity.
Assuntos
Mieloma Múltiplo , Talidomida , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Talidomida/uso terapêutico , Talidomida/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Feminino , Masculino , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Recidiva , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , IdosoRESUMO
In humans and mice, Nkx2-1 and Pax8 are crucial morphogenic transcription factors defining the early development of the thyroid and specific extrathyroidal tissues. By using 3-month-old single or double heterozygotes for Nkx2-1- and Pax8-null mutations (DHTP) mice, we studied brain abnormalities under different human-like dysthyroidisms, focusing on putative alterations of specific neurotransmitter systems, expression of markers of pre- and post-synaptic function and, given the physio-pathological role mitochondria have in controlling the bioenergetic status of neurons, of mitochondrial dynamics and oxidative balance. Compared to Wt controls, DHTP mice, bearing both systemic and brain hypothyroidism, showed altered expression of synaptic markers, generic and cholinergic (corroborated by immunohistochemistry in caudate, putamen, hippocampus, and basal forebrain) and glutamatergic ones, and reduced expression of key proteins of synaptic plasticity potency and several isoforms of glutamate receptors. The brain of DHTP mice was characterized by lower levels of H2O2 and imbalanced mitochondrial dynamics. Nkx2-1 + / - mice showed dopaminergic neuron-specific alterations, morphologically, more evident in the substantia nigra of DHTP mice. Nkx2-1 + / - mice also showed enhanced mitochondrial biogenesis and oxidative capacity likely as a global response of the brain to Nkx2-1 haploinsufficiency and/or to their elevated T3 circulating levels. Reduced transcription of both tyrosine hydroxylase and dopamine transporter was observed in Pax8 + / - euthyroid mice, suggesting a dopaminergic dysfunction, albeit likely at an early stage, but consistent with the deregulated glucose homeostasis observed in such animals. Overall, new information was obtained on the impact of haploinsufficiency of Pax8 and NKx2-1 on several brain neuroanatomical, molecular, and neurochemical aspects, thus opening the way for future targeting brain dysfunctions in the management of both overt and subclinical thyroid dysfunctions.
RESUMO
Background: Multiple Myeloma (MM) patients exhibit dysregulated immune system, which is further weakened by chemotherapeutic agents. While cereblon-modulating agents, such as pomalidomide and lenalidomide, have been found to improve the immune profile, the efficacy of their impact in combination with other treatments is yet unknown. Methods: We conducted an immune-profiling of a longitudinal cohort of 366 peripheral blood samples from the CC4047-MM-007 (OPTIMISMM, NCT01734928) study. This study followed relapsed/refractory Multiple Myeloma (RRMM) patients who were treated with Velcade + dexamethasone (Vd), or Vd with pomalidomide (PVd). 366 blood samples from 186 patients were evaluated using multi-color flow cytometry at 3 timepoints: screening, day 8 of cycle 1, and cycle 3. Results: Among NK and NKT cell populations, adding pomalidomide showed no inhibition in the frequency of NK cells. When expression of double positivity for activation markers like, p46/NKG2D, on NK cells was higher than the median, PVd treated patients showed significantly better (p=0.05) progression-free survival (PFS) (additional 15 months) than patients with lower than the median expression of p46/NKG2D on NK cells. PVd treated patients who expressed CD158a/b below the median at cycle 1 demonstrated a significantly better PFS (more than 18months). Among B cell subtypes, PVd treatment significantly increased the abundance of B1b cells (p<0.05) and decreased Bregs (p<0.05) at day 8 of both cycle 1 and cycle 3 when compared to screening samples. Of all the B cell-markers evaluated among paired samples, a higher expression of MZB cells at day 8 of cycle 1 has resulted in enhanced PFS in PVd treated patients. Within T cells, pomalidomide treatment did not decrease the frequency of CD8 T cells when compared with screening samples. The higher the surface expression of OX-40 on CD8 T cells and the lower the expression of PD-1 and CD25 on CD4 T cells by PVd treatment resulted in improved PFS. Conclusion: The prognostic significance for the number of immune markers is only seen in the PVd arm and none of these immune markers exhibit prognostic values in the Vd arm. This study demonstrates the importance of the immunomodulatory effects and the therapeutic benefit of adding pomalidomide to Vd treatment.
RESUMO
Early prognosis of clinical efficacy is an urgent need for oncology drug development. Herein, we systemically examined the quantitative approach of tumor growth inhibition (TGI) and survival modeling in the space of relapsed and refractory multiple myeloma (MM), aiming to provide insights into clinical drug development. Longitudinal serum M-protein and progression-free survival (PFS) data from three phase III studies (N = 1367) across six treatment regimens and different patient populations were leveraged. The TGI model successfully described the longitudinal M-protein data in patients with MM. The tumor inhibition and growth parameters were found to vary as per each study, likely due to the patient population and treatment regimen difference. Based on a parametric time-to-event model for PFS, M-protein reduction at week 4 was identified as a significant prognostic factor for PFS across the three studies. Other factors, including Eastern Cooperative Oncology Group performance status, prior anti-myeloma therapeutics, and baseline serum ß2-microglobulin level, were correlated with PFS as well. In conclusion, patient disease characteristics (i.e., baseline tumor burden and treatment lines) were important determinants of tumor inhibition and PFS in MM patients. M-protein change at week 4 was an early prognostic biomarker for PFS.
RESUMO
Thyroid dysfunctions are associated with liver diseases ranging, in severity, from insulin resistance (IR) to hepatocellular carcinoma. The pathogenic mechanisms appear complex and are not attributable, exclusively, to the impaired thyroid hormone (TH) signalling. Using a mouse model of human congenital hypothyroidism, young double heterozygote for both NK2 homeobox 1 (Nkx2-1)- and Paired box 8 (Pax8)-null mutations (DHTP) mice, and single heterozygous Pax8+/- and Nkx2-1+/- mice, we studied the liver pathways, the endocrine and metabolic factors affected in conditions of different dysthyroidisms. Young Nkx2-1+/- females displayed a slight hyperthyroidism and, in liver, increased TH signalling (i.e. increased expression of Dio1 and Trß1) and lipogenic gene expression, with triglycerides accumulation. Hypothyroid DHTP and euthyroid Pax8+/- females shared liver and skeletal muscle IR and hepatic hypothyroidism (i.e. reduced expression of Mct8, Dio1 and TRß1), activation of AKT and increased expression of glutathione peroxidase 4. Oxidative stress and reduced mitochondrial COX activity were observed in DHTP mice only. Pax8+/- females, but, unexpectedly, not DHTP ones, displayed transcriptional activation of the hepatic (and renal) gluconeogenic pathway, hypercortisolemia, fasting hyperglycaemia and hyperinsulinemia, reduced serum ß-hydroxybutyrate, associated with hepatic AMPK activation. DHTP mice showed hypercholesterolemia and activation of mTOR. Collectively, the data indicate that heterozygote mutations of Pax8 and Nkx2-1 genes may produce multiple dysmetabolisms, even under systemic euthyroidism. Differential liver pathways and multiple hormonal axes are affected with implications for energy and nutrient homeostasis. The identified players may be specific target in the management of thyroid dysfunction-associated dysmetabolisms in terms of prevention/counteraction of IR, type 2 diabetes and related comorbidities.
Assuntos
Hipotireoidismo Congênito , Diabetes Mellitus Tipo 2 , Animais , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/patologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Haploinsuficiência , Fígado/metabolismo , Redes e Vias Metabólicas , Camundongos , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Fator Nuclear 1 de TireoideRESUMO
BACKGROUND: Iberdomide is a novel cereblon E3 ligase modulator with enhanced tumouricidal and immune-stimulatory effects compared with immunomodulatory drugs. In preclinical myeloma models, iberdomide has shown synergy with dexamethasone, proteasome inhibitors, and CD38 monoclonal antibodies. We aimed to evaluate the safety and clinical activity of iberdomide plus dexamethasone in patients with heavily pretreated relapsed or refractory multiple myeloma. METHODS: We conducted a multicohort, open-label, phase 1/2 trial (CC-220-MM-001) at 42 treatment centres in Europe, Canada, and the USA. Patients aged 18 years or older with multiple myeloma who had received at least two previous lines of therapy, including lenalidomide or pomalidomide and a proteasome inhibitor, were enrolled into the dose-escalation cohort. Patients received escalating doses of oral iberdomide (0·3-1·6 mg on days 1-21 of each 28-day cycle) plus oral dexamethasone (40 mg [20 mg if age >75 years] once per week). A dose-expansion cohort at the recommended phase 2 dose was planned for patients who had received at least three previous lines of therapy and had triple-class refractory disease (refractory to immunomodulatory drugs, proteasome inhibitors, and CD38 antibodies). Treatment continued until progressive disease or unacceptable toxicity. The primary outcomes were the recommended phase 2 dose (in the dose-escalation cohort, phase 1) and overall response rate (defined as complete response or partial response; in the dose-expansion cohort, phase 2) in the full analysis set. This trial is ongoing and is registered with ClinicalTrials.gov, NCT02773030. FINDINGS: Between Dec 5, 2016, and Dec 16, 2020, 460 patients were assessed for eligibility across all cohorts and 197 were enrolled and treated with iberdomide plus dexamethasone (90 patients in the dose-escalation cohort and 107 in the dose-expansion cohort). In the dose-escalation cohort, 47 (52%) patients were female and 43 (48%) were male, 70 (78%) were White, and the median number of previous lines of therapy was 5 (IQR 4-8). In the dose-expansion cohort, 47 (44%) were female and 60 (56%) were male, 84 (79%) were White, and the median number of previous lines of therapy was 6 (IQR 5-8). At data cutoff (June 2, 2021), median follow-up was 5·8 months (IQR 3·0-13·7) in the dose-escalation cohort and 7·7 months (5·3-11·4) in the dose-expansion cohort. Two dose-limiting toxicities (both infections, at 1·2 mg and 1·3 mg) were observed in the dose-escalation cohort, and 1·6 mg was selected as the recommended phase 2 dose. In the dose-escalation cohort, the overall response rate was 32% (95% CI 23-43; 29 of 90 patients) across all doses, and the maximum tolerated dose was not reached. In the dose-expansion cohort, the overall response rate was 26% (95% CI 18-36; 28 of 107 patients). The most common grade 3 or worse adverse events were neutropenia (48 [45%] of 107 patients), anaemia (30 [28%]), infection (29 [27%]), and thrombocytopenia (23 [22%]). Serious adverse events occurred in 57 (53%) patients. There was one (1%) treatment-related death (sepsis) and five (5%) patients discontinued iberdomide due to adverse events. INTERPRETATION: Iberdomide plus dexamethasone was generally safe and showed meaningful clinical activity in heavily pretreated patients with multiple myeloma, including in disease that was refractory to immunomodulatory drugs. These data suggest that further evaluation of iberdomide plus dexamethasone or other standard antimyeloma therapies is warranted. FUNDING: Bristol Myers Squibb.
Assuntos
Mieloma Múltiplo , Humanos , Masculino , Feminino , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Dexametasona/efeitos adversos , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêuticoRESUMO
The number of mitochondria in the oocyte along with their functions (e.g., energy production, scavenger activity) decline with age progression. Such multifaceted functions support several processes during oocyte maturation, ranging from energy supply to synthesis of the steroid hormones. Hence, it is hardly surprising that their impairment has been reported in both physiological and premature ovarian aging, wherein they are crucial players in the apoptotic processes that arise in aged ovaries. In any form, ovarian aging implies the progressive damage of the mitochondrial structure and activities as regards to ovarian germ and somatic cells. The imbalance in the circulating hormones and peptides (e.g., gonadotropins, estrogens, AMH, activins, and inhibins), active along the pituitary-ovarian axis, represents the biochemical sign of ovarian aging. Despite the progress accomplished in determining the key role of the mitochondria in preserving ovarian follicular number and health, their modulation by the hormonal signalling pathways involved in ovarian aging has been poorly and randomly explored. Yet characterizing this mechanism is pivotal to molecularly define the implication of mitochondrial dysfunction in physiological and premature ovarian aging, respectively. However, it is fairly difficult considering that the pathways associated with ovarian aging might affect mitochondria directly or by altering the activity, stability and localization of proteins controlling mitochondrial dynamics and functions, either unbalancing other cellular mediators, released by the mitochondria, such as non-coding RNAs (ncRNAs). We will focus on the mitochondrial ncRNAs (i.e., mitomiRs and mtlncRNAs), that retranslocate from the mitochondria to the nucleus, as active players in aging and describe their role in the nuclear-mitochondrial crosstalk and its modulation by the pituitary-ovarian hormone dependent pathways. In this review, we will illustrate mitochondria as targets of the signaling pathways dependent on hormones and peptides active along the pituitary/ovarian axis and as transducers, with a particular focus on the molecules retrieved in the mitochondria, mainly ncRNAs. Given their regulatory function in cellular activities we propose them as potential diagnostic markers and/or therapeutic targets.
Assuntos
Estrogênios/fisiologia , Gonadotropinas Hipofisárias/fisiologia , Mitocôndrias/fisiologia , Ovário/fisiologia , RNA não Traduzido/fisiologia , Envelhecimento/fisiologia , Androgênios/fisiologia , Animais , Núcleo Celular/fisiologia , DNA Mitocondrial/genética , DNA Mitocondrial/fisiologia , Feminino , Atresia Folicular , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Mutação , Ovário/ultraestrutura , Transdução de SinaisRESUMO
Since the beginning of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, it has been clear that testing large groups of the population was the key to stem infection and prevent the effects of the coronavirus disease of 2019, mostly among sensitive patients. On the other hand, time and cost-sustainability of virus detection by molecular analysis such as reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) may be a major issue if testing is extended to large communities, mainly asymptomatic large communities. In this context, sample-pooling and test grouping could offer an effective solution. Here we report the screening on 1195 oral-nasopharyngeal swabs collected from students and staff of the Università degli Studi del Sannio (University of Sannio, Benevento, Campania, Italy) and analyzed by an in-house developed multiplex RT-qPCR for SARS-CoV-2 detection through a simple monodimensional sample pooling strategy. Overall, 400 distinct pools were generated and, within 24 h after swab collection, five positive samples were identified. Out of them, four were confirmed by using a commercially available kit suitable for in vitro diagnostic use (IVD). High accuracy, sensitivity and specificity were also determined by comparing our results with a reference IVD assay for all deconvoluted samples. Overall, we conducted 463 analyses instead of 1195, reducing testing resources by more than 60% without lengthening diagnosis time and without significant losses in sensitivity, suggesting that our strategy was successful in recognizing positive cases in a community of asymptomatic individuals with minor requirements of reagents and time when compared to normal testing procedures.
RESUMO
In the phase 3 OPTIMISMM trial, pomalidomide, bortezomib, and dexamethasone (PVd) demonstrated superior efficacy vs bortezomib and dexamethasone (Vd) in patients with relapsed or refractory multiple myeloma previously treated with lenalidomide, including those refractory to lenalidomide. This analysis evaluated outcomes in patients at first relapse (N = 226) by lenalidomide-refractory status, prior bortezomib exposure, and prior stem cell transplant (SCT). Second-line PVd significantly improved PFS vs Vd in lenalidomide-refractory (17.8 vs 9.5 months; P = 0.0276) and lenalidomide-nonrefractory patients (22.0 vs 12.0 months; P = 0.0491), patients with prior bortezomib (17.8 vs 12.0 months; P = 0.0068), and patients with (22.0 vs 13.8 months; P = 0.0241) or without (16.5 vs 9.5 months; P = 0.0454) prior SCT. In patients without prior bortezomib, median PFS was 20.7 vs 9.5 months (P = 0.1055). Significant improvement in overall response rate was also observed with PVd vs Vd in lenalidomide-refractory (85.9% vs 50.8%; P < 0.001) and lenalidomide-nonrefractory (95.7% vs 60.0%; P < 0.001) patients, with similar results regardless of prior bortezomib or SCT. No new safety signals were observed. These data demonstrate the benefit of PVd at first relapse, including immediately after upfront lenalidomide treatment failure and other common first-line treatments.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Terapia de Salvação , Adulto , Idoso , Idoso de 80 Anos ou mais , Bortezomib/administração & dosagem , Dexametasona/administração & dosagem , Feminino , Seguimentos , Humanos , Lenalidomida/administração & dosagem , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/patologia , Prognóstico , Taxa de Sobrevida , Talidomida/administração & dosagem , Talidomida/análogos & derivadosRESUMO
We analyzed gene expression levels of CRBN, cMYC, IRF4, BLIMP1, and XBP1 in 224 patients with multiple myeloma treated with pomalidomide and low-dose dexamethasone in the STRATUS study (ClinicalTrials.gov: NCT01712789; EudraCT number: 2012-001888-78). Clinical responses were observed at all CRBN expression levels. A trend in progression-free survival (PFS; p = .038) and a potential trend in overall survival (OS; p = .059) favoring high CRBN expressers were observed; however, no notable difference in overall response rate (ORR) was observed. ORR (30%), median PFS (17.7 weeks), and median OS (52.3 weeks) in low-CRBN expressers were comparable to those in the STRATUS intent-to-treat population (ORR, 33%; median PFS, 20.0 weeks; median OS, 51.7 weeks). A trend in ORR (p = .050) favoring higher cMYC expressers was observed with no notable difference in PFS or OS. This analysis does not support exploring CRBN as a biomarker for selecting patients for pomalidomide therapy.