Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 447(3): 413-8, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24717648

RESUMO

Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e(-)+2H(+)) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine-glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[Mo(VI)(O)OH(2)SCu(I)(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.


Assuntos
Aldeído Oxirredutases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Bradyrhizobiaceae/enzimologia , Complexos Multienzimáticos/antagonistas & inibidores , Compostos de Sulfidrila/farmacologia , Aldeído Oxirredutases/química , Proteínas de Bactérias/química , Domínio Catalítico/efeitos dos fármacos , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Molibdênio/química , Complexos Multienzimáticos/química , Oxirredução
2.
J Biol Inorg Chem ; 19(8): 1399-414, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25377894

RESUMO

Oligotropha carboxidovorans is characterized by the aerobic chemolithoautotrophic utilization of CO. CO oxidation by CO dehydrogenase proceeds at a unique bimetallic [CuSMoO2] cluster which matures posttranslationally while integrated into the completely folded apoenzyme. Kanamycin insertional mutants in coxE, coxF and coxG were characterized with respect to growth, expression of CO dehydrogenase, and the type of metal center present. These data along with sequence information were taken to delineate a model of metal cluster assembly. Biosynthesis starts with the MgATP-dependent, reductive sulfuration of [Mo(VI)O3] to [Mo(V)O2SH] which entails the AAA+-ATPase chaperone CoxD. Then Mo(V) is reoxidized and Cu(1+)-ion is integrated. Copper is supplied by the soluble CoxF protein which forms a complex with the membrane-bound von Willebrand protein CoxE through RGD-integrin interactions and enables the reduction of CoxF-bound Cu(2+), employing electrons from respiration. Copper appears as Cu(2+)-phytate, is mobilized through the phytase activity of CoxF and then transferred to the CoxF putative copper-binding site. The coxG gene does not participate in the maturation of the bimetallic cluster. Mutants in coxG retained the ability to utilize CO, although at a lower growth rate. They contained a regular CO dehydrogenase with a functional catalytic site. The presence of a pleckstrin homology (PH) domain on CoxG and the observed growth rates suggest a role of the PH domain in recruiting CO dehydrogenase to the cytoplasmic membrane enabling electron transfer from the enzyme to the respiratory chain. CoxD, CoxE and CoxF combine motifs of a DEAD-box RNA helicase which would explain their mutual translation.


Assuntos
Aldeído Oxirredutases/biossíntese , Aldeído Oxirredutases/metabolismo , Alphaproteobacteria/enzimologia , Cobre/metabolismo , Molibdênio/metabolismo , Complexos Multienzimáticos/biossíntese , Complexos Multienzimáticos/metabolismo , Processamento de Proteína Pós-Traducional , Enxofre/metabolismo , Aldeído Oxirredutases/química , Alphaproteobacteria/metabolismo , Domínio Catalítico , Cobre/química , Molibdênio/química , Complexos Multienzimáticos/química , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA