Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2305776120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011563

RESUMO

Individuals with a history of early-life stress (ELS) tend to have an altered course of depression and lower treatment response rates. Research suggests that ELS alters brain development, but the molecular changes in the brain following ELS that may mediate altered antidepressant response have not been systematically studied. Sex and gender also impact the risk of depression and treatment response. Here, we leveraged existing RNA sequencing datasets from 1) blood samples from depressed female- and male-identifying patients treated with escitalopram or desvenlafaxine and assessed for treatment response or failure; 2) the nucleus accumbens (NAc) of female and male mice exposed to ELS and/or adult stress; and 3) the NAc of mice after adult stress, antidepressant treatment with imipramine or ketamine, and assessed for treatment response or failure. We find that transcriptomic signatures of adult stress after a history of ELS correspond with transcriptomic signatures of treatment nonresponse, across species and multiple classes of antidepressants. Transcriptomic correspondence with treatment outcome was stronger among females and weaker among males. We next pharmacologically tested these predictions in our mouse model of early-life and adult social defeat stress and treatment with either chronic escitalopram or acute ketamine. Among female mice, the strongest predictor of behavior was an interaction between ELS and ketamine treatment. Among males, however, early experience and treatment were poor predictors of behavior, mirroring our bioinformatic predictions. These studies provide neurobiological evidence for molecular adaptations in the brain related to sex and ELS that contribute to antidepressant treatment response.


Assuntos
Experiências Adversas da Infância , Ketamina , Humanos , Masculino , Feminino , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/genética , Escitalopram , Ketamina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Resultado do Tratamento , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética
2.
J Neurosci ; 43(34): 5996-6009, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37429717

RESUMO

Early-life stress (ELS) is one of the strongest lifetime risk factors for depression, anxiety, suicide, and other psychiatric disorders, particularly after facing additional stressful events later in life. Human and animal studies demonstrate that ELS sensitizes individuals to subsequent stress. However, the neurobiological basis of such stress sensitization remains largely unexplored. We hypothesized that ELS-induced stress sensitization would be detectable at the level of neuronal ensembles, such that cells activated by ELS would be more reactive to adult stress. To test this, we leveraged transgenic mice to genetically tag, track, and manipulate experience-activated neurons. We found that in both male and female mice, ELS-activated neurons within the nucleus accumbens (NAc), and to a lesser extent the medial prefrontal cortex, were preferentially reactivated by adult stress. To test whether reactivation of ELS-activated ensembles in the NAc contributes to stress hypersensitivity, we expressed hM4Dis receptor in control or ELS-activated neurons of pups and chemogenetically inhibited their activity during experience of adult stress. Inhibition of ELS-activated NAc neurons, but not control-tagged neurons, ameliorated social avoidance behavior following chronic social defeat stress in males. These data provide evidence that ELS-induced stress hypersensitivity is encoded at the level of corticolimbic neuronal ensembles.SIGNIFICANCE STATEMENT Early-life stress enhances sensitivity to stress later in life, yet the mechanisms of such stress sensitization are largely unknown. Here, we show that neuronal ensembles in corticolimbic brain regions remain hypersensitive to stress across the life span, and quieting these ensembles during experience of adult stress rescues stress hypersensitivity.


Assuntos
Experiências Adversas da Infância , Córtex Pré-Frontal , Adulto , Humanos , Masculino , Camundongos , Feminino , Animais , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/psicologia , Neurônios , Ansiedade , Camundongos Transgênicos
3.
Horm Behav ; 159: 105472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38141539

RESUMO

Proper thyroid function is essential to the developing brain, including dopamine neuron differentiation, growth, and maintenance. Stress across the lifespan impacts thyroid hormone signaling and anxiety disorders and depression have been associated with thyroid dysfunction (both hypo- and hyper-active). However, less is known about how stress during postnatal development impacts thyroid function and related brain development. Our previous work in mice demonstrated that early-life stress (ELS) transiently impinged on expression of a transcription factor in dopamine neurons, Otx2, shown to be regulated by thyroid hormones. We hypothesized that thyroid hormone signaling may link experience of ELS with transcriptional dysregulation within the dopaminergic midbrain, and ultimately behavior. Here, we find that ELS transiently increases thyroid-stimulating hormone levels (inversely related to thyroid signaling) in both male and female mice at P21, an effect which recovers by adolescence. We next tested whether transient treatment of ELS mice with synthetic thyroid hormone (levothyroxine, LT4) could ameliorate the impact of ELS on sensitivity to future stress, and on expression of genes related to dopamine neuron development and maintenance, thyroid signaling, and plasticity within the ventral tegmental area. Among male mice, but not females, juvenile LT4 treatment prevented hypersensitivity to adult stress. We also found that rescuing developmental deficits in thyroid hormone signaling after ELS restored levels of some genes altered directly by ELS, and prevented alterations in expression of other genes sensitive to the second hit of adult stress. These findings suggest that thyroid signaling mediates the deleterious impact of ELS on VTA development, and that temporary treatment of hypothyroidism after ELS may be sufficient to prevent future stress hypersensitivity.


Assuntos
Experiências Adversas da Infância , Área Tegmentar Ventral , Camundongos , Animais , Masculino , Feminino , Área Tegmentar Ventral/metabolismo , Neurônios Dopaminérgicos/metabolismo , Hormônios Tireóideos/metabolismo , Expressão Gênica , Estresse Psicológico/genética
4.
Horm Behav ; 152: 105364, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087766

RESUMO

Parental care is diversely demonstrated across the animal kingdom, such that active practitioners and repertoires of parental behavior vary dramatically between and within taxa. For mammals, maternal care is ubiquitous while paternal and alloparental care are rare. The African striped mouse, a rodent species in the family Muridae, demonstrates maternal, paternal, and alloparental care. Because socio-environmental factors can considerably influence the development of their social behavior, including that of paternal and alloparental care, African striped mice are considered socially flexible. Here, we highlight African striped mice as a new model for the neurobiological study of male parental care. We first provide essential background information on the species' natural ecological setting and reproductive behavior, as well as the species-relevant interaction between ecology and reproduction. We then introduce the nature of maternal, paternal, and alloparental care in the species. Lastly, we provide a review of existing developmental and neurobiological perspectives and highlight potential avenues for future research.


Assuntos
Murinae , Comportamento Social , Animais , Camundongos , Masculino , Humanos , Reprodução , Pai
5.
J Neurosci ; 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099514

RESUMO

Paternal stress can induce long-lasting changes in germ cells potentially propagating heritable changes across generations. To date, no studies have investigated differences in transmission patterns between stress-resilient and -susceptible mice. We tested the hypothesis that transcriptional alterations in sperm during chronic social defeat stress (CSDS) transmit increased susceptibility to stress phenotypes to the next generation. We demonstrate differences in offspring from stressed fathers that depend upon paternal category (resilient vs susceptible) and offspring sex. Importantly, artificial insemination reveals that sperm mediates some of the behavioral phenotypes seen in offspring. Using RNA-sequencing we report substantial and distinct changes in the transcriptomic profiles of sperm following CSDS in susceptible vs resilient fathers, with alterations in long noncoding RNAs (lncRNAs) predominating especially in susceptibility. Correlation analysis revealed that these alterations were accompanied by a loss of regulation of protein-coding genes by lncRNAs in sperm of susceptible males. We also identify several co-expression gene modules that are enriched in differentially expressed genes in sperm from either resilient or susceptible fathers. Taken together, these studies advance our understanding of intergenerational epigenetic transmission of behavioral experience.SIGNIFICANCE STATEMENTThis manuscript contributes to the complex factors that influence the paternal transmission of stress phenotypes. By leveraging the segregation of males exposed to chronic social defeat stress into either resilient or susceptible categories we were able to identify the phenotypic differences in the paternal transmission of stress phenotypes across generations between the two lineages. Importantly, this work also alludes to the significance of both long noncoding RNAs and protein coding genes mediating the paternal transmission of stress. The knowledge gained from these data is of particular interest in understanding the risk for the development of psychiatric disorders such as anxiety and depression.

6.
Dev Psychobiol ; 64(1): e22227, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35050507

RESUMO

We explored the associations between early-life adversity and migration-related stress on the mental health of Central American and Mexican migrating children held in United States immigration detention facilities. Migrating children have high rates of trauma exposure prior to and during migration. Early-life adversity increases risk for developing mental health disorders. Forced separation of migrating children from their parents at the United States-Mexico border potentially exacerbates this risk. We sought to determine whether exposure to trauma prior to immigration and specific features of immigration detention were associated with posttraumatic stress symptomatology. We interviewed parents of 84 migrating children (ages 1-17) after families were released from immigration detention facilities to assess children's migration- and detention-related experiences. A modified version of the University of California Los Angeles Posttraumatic Stress Disorder (PTSD) Reaction Index was administered to assess children's PTSD symptoms and document trauma exposure. A total of 97.4% of children experienced at least one premigration traumatic event. PTSD symptom severity was most strongly predicted by premigration trauma and duration of parent-child separation. This study contributes to a growing empirical literature documenting that early-life adversity increases risk of developing mental health disorders, particularly following additional stress exposure, and that remaining with parents during immigration detention may help mitigate children's stress response.


Assuntos
Emigração e Imigração , Hispânico ou Latino , Adolescente , América Central , Criança , Pré-Escolar , Humanos , Lactente , México , Avaliação de Resultados em Cuidados de Saúde , Estados Unidos
7.
Nature ; 516(7529): 51-5, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25383518

RESUMO

ß-catenin is a multi-functional protein that has an important role in the mature central nervous system; its dysfunction has been implicated in several neuropsychiatric disorders, including depression. Here we show that in mice ß-catenin mediates pro-resilient and anxiolytic effects in the nucleus accumbens, a key brain reward region, an effect mediated by D2-type medium spiny neurons. Using genome-wide ß-catenin enrichment mapping, we identify Dicer1-important in small RNA (for example, microRNA) biogenesis--as a ß-catenin target gene that mediates resilience. Small RNA profiling after excising ß-catenin from nucleus accumbens in the context of chronic stress reveals ß-catenin-dependent microRNA regulation associated with resilience. Together, these findings establish ß-catenin as a critical regulator in the development of behavioural resilience, activating a network that includes Dicer1 and downstream microRNAs. We thus present a foundation for the development of novel therapeutic targets to promote stress resilience.


Assuntos
RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Resiliência Psicológica , Ribonuclease III/genética , Estresse Fisiológico/genética , beta Catenina/metabolismo , Adaptação Fisiológica/genética , Animais , RNA Helicases DEAD-box/metabolismo , Depressão/fisiopatologia , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Neurônios/metabolismo , Ribonuclease III/metabolismo , Transdução de Sinais , beta Catenina/genética
8.
Proc Natl Acad Sci U S A ; 113(44): 12562-12567, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791098

RESUMO

Human major depressive disorder (MDD), along with related mood disorders, is among the world's greatest public health concerns; however, its pathophysiology remains poorly understood. Persistent changes in gene expression are known to promote physiological aberrations implicated in MDD. More recently, histone mechanisms affecting cell type- and regional-specific chromatin structures have also been shown to contribute to transcriptional programs related to depressive behaviors, as well as responses to antidepressants. Although much emphasis has been placed in recent years on roles for histone posttranslational modifications and chromatin-remodeling events in the etiology of MDD, it has become increasingly clear that replication-independent histone variants (e.g., H3.3), which differ in primary amino acid sequence from their canonical counterparts, similarly play critical roles in the regulation of activity-dependent neuronal transcription, synaptic connectivity, and behavioral plasticity. Here, we demonstrate a role for increased H3.3 dynamics in the nucleus accumbens (NAc)-a key limbic brain reward region-in the regulation of aberrant social stress-mediated gene expression and the precipitation of depressive-like behaviors in mice. We find that molecular blockade of these dynamics promotes resilience to chronic social stress and results in a partial renormalization of stress-associated transcriptional patterns in the NAc. In sum, our findings establish H3.3 dynamics as a critical, and previously undocumented, regulator of mood and suggest that future therapies aimed at modulating striatal histone dynamics may potentiate beneficial behavioral adaptations to negative emotional stimuli.


Assuntos
Transtorno Depressivo/fisiopatologia , Histonas/metabolismo , Núcleo Accumbens/fisiopatologia , Estresse Psicológico/fisiopatologia , Adulto , Idoso , Animais , Transtorno Depressivo/genética , Transtorno Depressivo/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Núcleo Accumbens/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estresse Psicológico/genética
9.
Proc Natl Acad Sci U S A ; 113(10): 2726-31, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26831103

RESUMO

The reinforcing and rewarding properties of cocaine are attributed to its ability to increase dopaminergic transmission in nucleus accumbens (NAc). This action reinforces drug taking and seeking and leads to potent and long-lasting associations between the rewarding effects of the drug and the cues associated with its availability. The inability to extinguish these associations is a key factor contributing to relapse. Dopamine produces these effects by controlling the activity of two subpopulations of NAc medium spiny neurons (MSNs) that are defined by their predominant expression of either dopamine D1 or D2 receptors. Previous work has demonstrated that optogenetically stimulating D1 MSNs promotes reward, whereas stimulating D2 MSNs produces aversion. However, we still lack a clear understanding of how the endogenous activity of these cell types is affected by cocaine and encodes information that drives drug-associated behaviors. Using fiber photometry calcium imaging we define D1 MSNs as the specific population of cells in NAc that encodes information about drug associations and elucidate the temporal profile with which D1 activity is increased to drive drug seeking in response to contextual cues. Chronic cocaine exposure dysregulates these D1 signals to both prevent extinction and facilitate reinstatement of drug seeking to drive relapse. Directly manipulating these D1 signals using designer receptors exclusively activated by designer drugs prevents contextual associations. Together, these data elucidate the responses of D1- and D2-type MSNs in NAc to acute cocaine and during the formation of context-reward associations and define how prior cocaine exposure selectively dysregulates D1 signaling to drive relapse.


Assuntos
Cocaína/farmacologia , Neurônios/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Recompensa , Análise de Variância , Animais , Cocaína/administração & dosagem , Sinais (Psicologia) , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroimagem/métodos , Neurônios/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Transdução de Sinais/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 113(34): 9623-8, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27506785

RESUMO

Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motivation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction.


Assuntos
Proteínas de Transporte/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/administração & dosagem , Histonas/metabolismo , Núcleo Accumbens/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Proteínas de Transporte/metabolismo , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/patologia , Histonas/genética , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Núcleo Accumbens/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
11.
Pacing Clin Electrophysiol ; 41(3): 238-245, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315657

RESUMO

BACKGROUND: It has been difficult to prove that "catecholamine-induced cardiomyopathy" contributes to the mechanism of sudden cardiac death in Chagas heart disease. Also, it is almost impossible to rule out the possibility that it is not involved in the process. More importantly, the vagal-cholinergic pathway in the ventricle plays a direct role in the prevention of the initiation of complex ventricular arrhythmias, including nonsustained ventricular tachycardia, ventricular fibrillation responsible for sudden death. OBJECTIVE: To determine frequency of parasympathetic autonomic indices among the different groups of risk of cardiovascular death when stratified by Rassi score. METHODS: Patients with Chagas heart disease were selected and divided into three risk groups by Rassi score. A fourth group, non-Chagas group, was of similar age and gender. All were subjected to analysis of heart rate variability during controlled breathing (RSA) and tilt table passive test (tilt test). High frequency and low frequency/high frequency ratio were calculated and presented by box-plot. Also, t-test was used to compare the two groups. RESULTS: It was observed that the parasympathetic and sympathetic component were affected, when the risk group increased the response was worsened to the stimulus (RSA or Tilt). Also, the low-risk group was jeopardized, when compared to the non-Chagas group. CONCLUSION: The loss of parasympathetic modulation was present in all Rassi risk groups, including the low risk, indicating that a morphological change of the myocardium represents a detectable neurofunctional change.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Cardiomiopatia Chagásica/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Cardiomiopatia Chagásica/mortalidade , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , Teste da Mesa Inclinada
12.
J Neurosci ; 36(17): 4690-7, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122028

RESUMO

UNLABELLED: Recent studies have implicated epigenetic remodeling in brain reward regions following psychostimulant or stress exposure. It has only recently become possible to target a given type of epigenetic remodeling to a single gene of interest, and to probe the functional relevance of such regulation to neuropsychiatric disease. We sought to examine the role of histone modifications at the murine Cdk5 (cyclin-dependent kinase 5) locus, given growing evidence of Cdk5 expression in nucleus accumbens (NAc) influencing reward-related behaviors. Viral-mediated delivery of engineered zinc finger proteins (ZFP) targeted histone H3 lysine 9/14 acetylation (H3K9/14ac), a transcriptionally active mark, or histone H3 lysine 9 dimethylation (H3K9me2), which is associated with transcriptional repression, specifically to the Cdk5 locus in NAc in vivo We found that Cdk5-ZFP transcription factors are sufficient to bidirectionally regulate Cdk5 gene expression via enrichment of their respective histone modifications. We examined the behavioral consequences of this epigenetic remodeling and found that Cdk5-targeted H3K9/14ac increased cocaine-induced locomotor behavior, as well as resilience to social stress. Conversely, Cdk5-targeted H3K9me2 attenuated both cocaine-induced locomotor behavior and conditioned place preference, but had no effect on stress-induced social avoidance behavior. The current study provides evidence for the causal role of Cdk5 epigenetic remodeling in NAc in Cdk5 gene expression and in the control of reward and stress responses. Moreover, these data are especially compelling given that previous work demonstrated opposite behavioral phenotypes compared with those reported here upon Cdk5 overexpression or knockdown, demonstrating the importance of targeted epigenetic remodeling tools for studying more subtle molecular changes that contribute to neuropsychiatric disease. SIGNIFICANCE STATEMENT: Addiction and depression are highly heritable diseases, yet it has been difficult to identify gene sequence variations that underlie this heritability. Gene regulation via epigenetic remodeling is an additional mechanism contributing to the neurobiological basis of drug and stress exposure. In particular, epigenetic regulation of the Cdk5 gene alters responses to cocaine and stress in mouse and rat models. In this study, we used a novel technology, zinc-finger engineered transcription factors, to remodel histone proteins specifically at the Cdk5 gene. We found that this is sufficient to regulate the expression of Cdk5 and results in altered behavioral responses to cocaine and social stress. These data provide compelling evidence of the significance of epigenetic regulation in the neurobiological basis of reward- and stress-related neuropsychiatric disease.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Quinase 5 Dependente de Ciclina/genética , Epigênese Genética/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Quinase 5 Dependente de Ciclina/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Recompensa , Dedos de Zinco/genética
13.
Eur J Neurosci ; 39(6): 946-956, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24446918

RESUMO

Variation within mesolimbic dopamine (DA) pathways has significant implications for behavioral responses to rewards, and previous studies have indicated long-term programming effects of early life stress on these pathways. In the current study, we examined the impact of natural variations in maternal care in Long Evans rats on the development of DA pathways in female offspring and the consequences for reward-directed behaviors. We found that tyrosine hydroxylase (TH) immunoreactivity in the ventral tegmental area was elevated by postnatal day 6 in response to maternal licking/grooming (LG), and that these effects were sustained into adulthood. Increased TH immunoreactivity was not found to be associated with altered epigenetic regulation or transcriptional activation of Th, but probably involved LG-associated changes in the differentiation of postnatal DA neurons through increased expression of Cdkn1c, and enhanced survival of DA projections through LG-associated increases in Lmx1b and brain-derived neurotrophic factor. At weaning, high-LG offspring had elevated DA receptor mRNA levels within the nucleus accumbens and increased conditioned place preference for a high-fat diet. In contrast, high-LG, as compared with low-LG, juvenile offspring had a reduced preference for social interactions with siblings, and haloperidol administration abolished group differences in conditioned place preference through a shift towards increased social preferences in high-LG offspring. The effects of maternal care on developing DA pathways and reward-directed behavior of female offspring that we have observed may play a critical role in the behavioral transmission of maternal LG from mother to daughter, and account for individual differences in the mesolimbic DA system.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Comportamento Materno , Mesencéfalo/crescimento & desenvolvimento , Recompensa , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Mesencéfalo/metabolismo , Mesencéfalo/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
14.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559030

RESUMO

Early-life stress increases sensitivity to subsequent stress, which has been observed among humans, other animals, at the level of cellular activity, and at the level of gene expression. However, the molecular mechanisms underlying such long-lasting sensitivity are poorly understood. We tested the hypothesis that persistent changes in transcription and transcriptional potential were maintained at the level of the epigenome, through changes in chromatin. We used a combination of bottom-up mass spectrometry, viral-mediated epigenome-editing, behavioral quantification, and RNA-sequencing in a mouse model of early-life stress, focusing on the ventral tegmental area (VTA), a brain region critically implicated in motivation, reward learning, stress response, and mood and drug disorders. We find that early-life stress in mice alters histone dynamics in VTA and that a majority of these modifications are associated with an open chromatin state that would predict active, primed, or poised gene expression, including enriched histone-3 lysine-4 methylation and the H3K4 monomethylase Setd7. Mimicking ELS through over-expression of Setd7 and enrichment of H3K4me1 in VTA recapitulates ELS-induced behavioral and transcriptional hypersensitivity to future stress. These findings enrich our understanding of the epigenetic mechanisms linking early-life environmental experiences to long-term alterations in stress reactivity within the brain's reward circuitry, with implications for understanding and potentially treating mood and anxiety disorders in humans.

15.
Genes Brain Behav ; 22(1): e12830, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36412100

RESUMO

Chronic pain involves both central and peripheral neuronal plasticity that encompasses changes in the brain, spinal cord, and peripheral nociceptors. Within the forebrain, mesocorticolimbic regions associated with emotional regulation have recently been shown to exhibit lasting gene expression changes in models of chronic pain. To better understand how such enduring transcriptional changes might be regulated within brain structures associated with processing of pain or affect, we examined epigenetic modifications involved with active or permissive transcriptional states (histone H3 lysine 4 mono and trimethylation, and histone H3 lysine 27 acetylation) in periaqueductal gray (PAG), lateral hypothalamus (LH), nucleus accumbens (NAc), and ventral tegmental area (VTA) 5 weeks after sciatic nerve injury in mice to model chronic pain. For both male and female mice in chronic pain, we observed an overall trend for a reduction of these epigenetic markers in periaqueductal gray, LH, and NAc, but not VTA. Moreover, we discovered that some epigenetic modifications exhibited changes associated with pain history, while others were associated with individual differences in pain sensitivity. When taken together, these results suggest that nerve injury leads to chronic chromatin-mediated suppression of transcription in key limbic brain structures and circuits, which may underlie enduring changes in pain processing and sensitivity within these systems.


Assuntos
Dor Crônica , Neuralgia , Feminino , Camundongos , Masculino , Animais , Dor Crônica/genética , Histonas/genética , Código das Histonas , Lisina/genética , Neuralgia/genética , Neuralgia/metabolismo
16.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662236

RESUMO

Proper thyroid function is essential to the developing brain, including dopamine neuron differentiation, growth, and maintenance. Stress across the lifespan impacts thyroid hormone signaling and anxiety disorders and depression have been associated with thyroid dysfunction (both hypo- and hyper-active). However, less is known about how stress during postnatal development impacts thyroid function and related brain development. Our previous work in mice demonstrated that early-life stress (ELS) transiently impinged on expression of a transcription factor in dopamine neurons shown to be regulated by thyroid hormones. We hypothesized that thyroid hormone signaling may link experience of ELS with transcriptional dysregulation within the dopaminergic midbrain, and ultimately behavior. Here, we find that ELS transiently increases thyroid-stimulating hormone levels (inversely related to thyroid signaling) in both male and female mice at P21, an effect which recovers by adolescence. We next tested whether transient treatment of ELS mice with synthetic thyroid hormone (levothyroxine, LT4) could ameliorate the impact of ELS on sensitivity to future stress, and on expression of genes related to dopamine neuron development and maintenance, thyroid signaling, and plasticity within the ventral tegmental area. Among male mice, but not females, juvenile LT4 treatment prevented hypersensitivity to adult stress. We also found that rescuing developmental deficits in thyroid hormone signaling after ELS restored levels of some genes altered directly by ELS, and prevented alterations in expression of other genes sensitive to the second hit of adult stress. These findings suggest that thyroid signaling mediates the deleterious impact of ELS on VTA development, and that temporary treatment of hypothyroidism after ELS may be sufficient to prevent future stress hypersensitivity.

17.
Neuron ; 111(22): 3541-3553.e8, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657441

RESUMO

Dopamine neurons of the ventral tegmental area (VTADA) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear whether the same or different VTADA neurons encode these different stimuli. To address this question, we performed two-photon calcium imaging in mice presented with food and conspecifics and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that increasing motivation for one stimulus increases overlap. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone-related genes in individual VTADA neurons. Taken together, our functional and transcriptional data suggest overlapping VTADA populations underlie food and social motivation.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Camundongos , Animais , Neurônios Dopaminérgicos/fisiologia , Alimentos , Motivação
18.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37293057

RESUMO

Dopamine neurons of the ventral tegmental area (VTA DA ) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear if the same or different VTA DA neurons encode these different stimuli. To address this question, we performed 2-photon calcium imaging in mice presented with food and conspecifics, and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that modifying motivation for one stimulus affects responses to both stimuli. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone related genes in individual VTA DA neurons. Taken together, our functional and transcriptional data suggest overlapping VTA DA populations underlie food and social motivation.

19.
Nat Neurosci ; 26(7): 1229-1244, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291337

RESUMO

The development of physical dependence and addiction disorders due to misuse of opioid analgesics is a major concern with pain therapeutics. We developed a mouse model of oxycodone exposure and subsequent withdrawal in the presence or absence of chronic neuropathic pain. Oxycodone withdrawal alone triggered robust gene expression adaptations in the nucleus accumbens, medial prefrontal cortex and ventral tegmental area, with numerous genes and pathways selectively affected by oxycodone withdrawal in mice with peripheral nerve injury. Pathway analysis predicted that histone deacetylase (HDAC) 1 is a top upstream regulator in opioid withdrawal in nucleus accumbens and medial prefrontal cortex. The novel HDAC1/HDAC2 inhibitor, Regenacy Brain Class I HDAC Inhibitor (RBC1HI), attenuated behavioral manifestations of oxycodone withdrawal, especially in mice with neuropathic pain. These findings suggest that inhibition of HDAC1/HDAC2 may provide an avenue for patients with chronic pain who are dependent on opioids to transition to non-opioid analgesics.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Oxicodona/farmacologia , Entorpecentes , Histona Desacetilase 1/metabolismo , Recompensa , Analgésicos Opioides/farmacologia , Histona Desacetilase 2/metabolismo
20.
Biol Psychiatry ; 91(1): 36-42, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602500

RESUMO

Both history of early-life stress (ELS) and female sex are associated with increased risk for depression. The complexity of how ELS interacts with brain development and sex to impart risk for multifaceted neuropsychiatric disorders is also unlikely to be understood by examining changes in single genes. Here, we review an emerging literature on genome-wide transcriptional and epigenetic signatures of ELS and the potential moderating influence of sex. We discuss evidence both that there are latent sex differences revealed by ELS and that ELS itself produces latent transcriptomic changes revealed by adult stress. In instances where there are broad similarities in global signatures of ELS among females and males, genes that contribute to these patterns are largely distinct based on sex. As this area of investigation grows, an effort should be made to better understand the sex-specific impact of ELS within the human brain, specific contributions of chromosomal versus hormonal sex, how ELS alters the time course of normal transcriptional development, and the cell-type specificity of transcriptomic and epigenomic changes in the brain. A better understanding of how ELS interacts with sex to alter transcriptomic and epigenomic signatures in the brain will inform individualized therapeutic strategies to prevent or ameliorate depression and other psychiatric disorders in this vulnerable population.


Assuntos
Experiências Adversas da Infância , Encéfalo , Epigenômica , Feminino , Humanos , Masculino , Caracteres Sexuais , Estresse Psicológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA