RESUMO
Many bacteria have hemerythrin (Hr) proteins that bind O2, including Pseudomonas aeruginosa, in which microoxia-induced Hr (Mhr) provide fitness advantages under microoxic conditions. Mhr has a 23 amino-acid extension at its C-terminus relative to a well-characterized Hr from Methylococcus capsulatus, and similar extensions are also found in Hrs from other bacteria. The last 11 amino acids of this extended, C-terminal tail are highly conserved in gammaproteobacteria and predicted to form a helix with positively charged and hydrophobic faces. In cellular fractionation assays, wild-type (WT) Mhr was found in both membrane and cytosolic fractions, while a MhrW143* variant lacking the last 11 residues was largely in the cytosol and did not complement Mhr function in competition assays. MhrL112Y, a variant that has a much longer-lived O2-bound form, was fully functional and had a similar localization pattern to that of WT Mhr. Both MhrW143* and MhrL112Y had secondary structures, stabilities, and O2-binding kinetics similar to those of WT Mhr. Fluorescence studies revealed that the C-terminal tail, and particularly the fragment corresponding to its last 11 residues, was sufficient and necessary for association with lipid vesicles. Molecular dynamics simulations and subsequent cellular analysis of Mhr variants have demonstrated that conserved, positively charged residues in the tail are important for Mhr interactions with negatively charged membranes and the contribution of this protein to competitive fitness. Together, these data suggest that peripheral interactions of Mhr with membranes are guided by the C-terminal tail and are independent of O2-binding.
Assuntos
Membrana Celular , Hemeritrina , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Hemeritrina/metabolismo , Hemeritrina/química , Hemeritrina/genética , Membrana Celular/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Aminoácidos , Sequência Conservada , Oxigênio/metabolismoRESUMO
Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron-sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been demonstrated. The microbe Clostridium pasteurianum produces three [FeFe]-hydrogenases that differ in "catalytic bias" by exerting a disproportionate rate acceleration in one direction or the other that spans a remarkable 6 orders of magnitude. The combination of high-resolution structural work, biochemical analyses, and computational modeling indicates that protein secondary interactions directly influence the relative stabilization/destabilization of different oxidation states of the active site metal cluster. This selective stabilization or destabilization of oxidation states can preferentially promote hydrogen oxidation or proton reduction and represents a simple yet elegant model by which a protein catalytic site can confer catalytic bias.
Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Catálise , Clostridium/enzimologia , Oxirredução , Difração de Raios XRESUMO
Nitrogenase catalyzes the reduction of dinitrogen (N2) using low-potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP-dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O2)-sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds, including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd-/Fld-reducing enzymes in 359 genomes of putative N2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified, and their distributions largely corresponded to differences in the host cells' ability to integrate O2 or light into energy metabolism. The predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the levels of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation.IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds, including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs. Here, using informatics approaches applied to genomic data, we show that pathways of electron transfer to nitrogenase in metabolically diverse diazotrophic taxa have diversified primarily in response to host cells' acquired ability to integrate O2 or light into their energy metabolism. The acquisition of two key enzyme complexes enabled aerobic and facultatively anaerobic phototrophic taxa to generate electrons of sufficiently low potential to reduce nitrogenase: the bifurcation of electrons via the Fix complex or the coupling of Fd reduction to reverse ion translocation via the Rhodobacter nitrogen fixation (Rnf) complex.
Assuntos
Bactérias/genética , Ferredoxinas/química , Flavodoxina/química , Fungos/genética , Nitrogenase/metabolismo , Aerobiose , Anaerobiose , Bactérias/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Genoma Bacteriano , Genoma Fúngico , Nitrogenase/genética , Filogenia , Transdução de SinaisRESUMO
Nitrogenase reduces dinitrogen (N2) to ammonia in biological nitrogen fixation. The nitrogenase Fe protein cycle involves a transient association between the reduced, MgATP-bound Fe protein and the MoFe protein and includes electron transfer, ATP hydrolysis, release of Pi, and dissociation of the oxidized, MgADP-bound Fe protein from the MoFe protein. The cycle is completed by reduction of oxidized Fe protein and nucleotide exchange. Recently, a kinetic study of the nitrogenase Fe protein cycle involving the physiological reductant flavodoxin reported a major revision of the rate-limiting step from MoFe protein and Fe protein dissociation to release of Pi Because the Fe protein cannot interact with flavodoxin and the MoFe protein simultaneously, knowledge of the interactions between flavodoxin and the different nucleotide states of the Fe protein is critically important for understanding the Fe protein cycle. Here we used time-resolved limited proteolysis and chemical cross-linking to examine nucleotide-induced structural changes in the Fe protein and their effects on interactions with flavodoxin. Differences in proteolytic cleavage patterns and chemical cross-linking patterns were consistent with known nucleotide-induced structural differences in the Fe protein and indicated that MgATP-bound Fe protein resembles the structure of the Fe protein in the stabilized nitrogenase complex structures. Docking models and cross-linking patterns between the Fe protein and flavodoxin revealed that the MgADP-bound state of the Fe protein has the most complementary docking interface with flavodoxin compared with the MgATP-bound state. Together, these findings provide new insights into the control mechanisms in protein-protein interactions during the Fe protein cycle.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flavodoxina/metabolismo , Ferro/metabolismo , Nitrogenase/metabolismo , Substâncias Redutoras/metabolismo , Sequência de Aminoácidos , Azotobacter vinelandii/enzimologia , Simulação de Acoplamento Molecular , Nitrogenase/química , Ligação Proteica , Conformação Proteica , ProteóliseRESUMO
Nitrogenase reduction of dinitrogen (N2) to ammonia (NH3) involves a sequence of events that occur upon the transient association of the reduced Fe protein containing two ATP molecules with the MoFe protein that includes electron transfer, ATP hydrolysis, Pi release, and dissociation of the oxidized, ADP-containing Fe protein from the reduced MoFe protein. Numerous kinetic studies using the nonphysiological electron donor dithionite have suggested that the rate-limiting step in this reaction cycle is the dissociation of the Fe protein from the MoFe protein. Here, we have established the rate constants for each of the key steps in the catalytic cycle using the physiological reductant flavodoxin protein in its hydroquinone state. The findings indicate that with this reductant, the rate-limiting step in the reaction cycle is not protein-protein dissociation or reduction of the oxidized Fe protein, but rather events associated with the Pi release step. Further, it is demonstrated that (i) Fe protein transfers only one electron to MoFe protein in each Fe protein cycle coupled with hydrolysis of two ATP molecules, (ii) the oxidized Fe protein is not reduced when bound to MoFe protein, and (iii) the Fe protein interacts with flavodoxin using the same binding interface that is used with the MoFe protein. These findings allow a revision of the rate-limiting step in the nitrogenase Fe protein cycle.
Assuntos
Trifosfato de Adenosina/metabolismo , Azotobacter vinelandii/metabolismo , Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Oxirredutases/metabolismo , Catálise , Transporte de Elétrons , Hidrólise , Molibdoferredoxina/química , Nitrogenase/química , Oxirredução , Conformação ProteicaRESUMO
The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.
Assuntos
Anaplasma phagocytophilum , Anaplasmose , Artrópodes , Borrelia burgdorferi , Ixodes , Doença de Lyme , Anaplasma phagocytophilum/fisiologia , Animais , Endorribonucleases , Ixodes/genética , Ixodes/microbiologia , Proteínas Serina-Treonina Quinases , Fator 2 Associado a Receptor de TNFRESUMO
Azotobacter vinelandii contains three forms of nitrogenase known as the Mo-, V-, and Fe-nitrogenases. They are all two-component enzyme systems, where the catalytic component, referred to as NifDK, VnfDGK, and AnfDGK, associates with the reductase component, the Fe protein or NifH, VnfH, and AnfH respectively. AnfDGK and VnfDGK have an additional subunit compared to NifDK, termed gamma or AnfG and VnfG, whose role is unknown. The expression of each nitrogenase is tightly regulated by metal availability, however it is known that there is crosstalk between the Mo- and Vnitrogenases but the Fenitrogenase components cannot support substrate reduction with its Monitrogenase counterparts. Here, docking models for the nitrogenase complexes were generated in ClusPro 2.0 based on the crystal structure of the Monitrogenase and refined using the HADDOCK 2.2 refinement interface to identify structural determinants that enable crosstalk between the Mo- and Vnitrogenase but not the Fenitrogenase. Differing salt bridge interactions were identified at the binding interface of each complex. Specifically, positively charged residues of VnfG enable complementary interactions with NifH and VnfH but not AnfH. Similarly, negatively charged residues of AnfG enable interactions with AnfH but not NifH or VnfH. A role for the G subunit is revealed where VnfG could be mediating crosstalk between the Mo- and Vnitrogenases while the AnfG subunit on AnfDGK makes interactions with NifH and VnfH unfavorable, reducing competition with NifDK and funneling electrons to the most efficient nitrogenase.
Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/química , Complexos Multiproteicos/química , Nitrogenase/químicaRESUMO
Most biological nitrogen fixation (BNF) results from the activity of the molybdenum nitrogenase (Mo-nitrogenase, Nif), an oxygen-sensitive metalloenzyme complex found in all known diazotrophs. Two alternative forms of nitrogenase, the vanadium nitrogenase (V-nitrogenase, Vnf) and the iron-only nitrogenase (Fe-only nitrogenase, Anf) have also been identified in the genome of some organisms that encode for Nif. It has been suggested that alternative nitrogenases were responsible for N2-fixation on early Earth because oceans were depleted of bioavailable Mo. Results of recent phylogenetic- and structure-based studies suggest, however, that such an evolutionary path is unlikely, and favor a new model for a stepwise evolution of nitrogenase where the V-nitrogenase and the Fe-only nitrogenase are not the ancestor of the Mo-nitrogenase. Rather, Mo-nitrogenase emerged within the methanogenic archaea and then gave rise to the alternative forms suggesting they arose later in response to the availability of fixed N2 and local environmental factors that influenced metal availability. This review summarizes the current state of knowledge on (1) the biochemistry of these complex systems highlighting the common and specific structural features and catalytic activities of the enzymes, (2) the recent progress in defining the discrete set of genes associated to N2-fixation and the regulatory features that coordinate the differential expression of genes in response to metal availability, and (3) the diverse taxonomic and phylogenic distribution of nitrogenase enzymes and the evolutionary history of BNF from the perspective of metal content and metal availability.
Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Regulação Enzimológica da Expressão Gênica , Molibdênio , Fixação de Nitrogênio , Nitrogenase/metabolismo , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimentoRESUMO
The protocol detailed here describes a way to perform hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS) on oxygen sensitive proteins. HDX-MS is a powerful tool for studying the protein structure-function relationship. Applying this technique to anaerobic proteins provides insight into the mechanism of proteins that perform oxygen sensitive chemistry. A problem when using HDX-MS to study anaerobic proteins is that there are many parts that require constant movement into and out of an anaerobic chamber. This can affect the seal, increasing the likelihood of oxygen exposure. Exposure to oxygen causes the cofactors bound to these proteins, a common example being FeS clusters, to no longer interact with the amino acid residues responsible for coordinating the FeS clusters, causing loss of the clusters and irreversible inactivation of the protein. To counteract this, a double vial system was developed that allows the preparation of solutions and reaction mixtures anaerobically, but also allows these solutions to be moved to an aerobic environment while shielding the solutions from oxygen. Additionally, movement isn't limited like it is in an anaerobic chamber, ensuring more consistent data, and fewer errors during the course of the reaction.