Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mycoses ; 67(1): e13692, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214431

RESUMO

BACKGROUND: The role of artificial intelligence (AI) in the discrimination between pulmonary cryptococcosis (PC) and lung adenocarcinoma (LA) warrants further research. OBJECTIVES: To compare the performances of AI models with clinicians in distinguishing PC from LA on chest CT. METHODS: Patients diagnosed with confirmed PC or LA were retrospectively recruited from three tertiary hospitals in Guangzhou. A deep learning framework was employed to develop two models: an undelineated supervised training (UST) model utilising original CT images, and a delineated supervised training (DST) model utilising CT images with manual lesion annotations provided by physicians. A subset of 20 cases was randomly selected from the entire dataset and reviewed by clinicians through a network questionnaire. The sensitivity, specificity and accuracy of the models and the clinicians were calculated. RESULTS: A total of 395 PC cases and 249 LA cases were included in the final analysis. The internal validation results for the UST model showed a sensitivity of 85.3%, specificity of 81.0%, accuracy of 83.6% and an area under the curve (AUC) of 0.93. Similarly, the DST model exhibited a sensitivity of 88.2%, specificity of 88.1%, accuracy of 88.2% and an AUC of 0.94. The external validation of the two models yielded AUC values of 0.74 and 0.77, respectively. The average sensitivity, specificity and accuracy of 102 clinicians were determined to be 63.1%, 53.7% and 59.3%, respectively. CONCLUSIONS: Both models outperformed the clinicians in distinguishing between PC and LA on chest CT, with the UST model exhibiting comparable performance to the DST model.


Assuntos
Adenocarcinoma de Pulmão , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Inteligência Artificial , Estudos Retrospectivos , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia
2.
Cardiovasc Eng Technol ; 14(3): 380-392, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36849622

RESUMO

PURPOSE: Computed tomography coronary angiography (CCTA) images provide optimal visualization of coronary arteries to aid in diagnosing coronary heart disease (CHD). With the deep convolutional neural network, this work aims to develop an intelligent and lightweight coronary artery segmentation algorithm that can be deployed in hospital systems to assist clinicians in quantitatively analyzing CHD. METHODS: With the multi-level feature fusion, we proposed Dual-Attention Coordination U-Net (DAC-UNet) that achieves automated coronary artery segmentation in 2D CCTA images. The coronary artery occupies a small region, and the foreground and background are extremely unbalanced. For this reason, the more original information can be retained by fusing related features between adjacent layers, which is conducive to recovering the small coronary artery area. The dual-attention coordination mechanism can select valid information and filter redundant information. Moreover, the complementation and coordination of double attention factors can enhance the integrity of features of coronary arteries, reduce the interference of non-coronary arteries, and prevent over-learning. With gradual learning, the balanced character of double attention factors promotes the generalization ability of the model to enhance coronary artery localization and contour detail segmentation. RESULTS: Compared with existing related segmentation methods, our method achieves a certain degree of improvement in 2D CCTA images for the segmentation accuracy of coronary arteries with a mean Dice index of 0.7920. Furthermore, the method can obtain relatively accurate results even in a small sample dataset and is easy to implement and deploy, which is promising. The code is available at: https://github.com/windfly666/Segmentation . CONCLUSION: Our method can capture the coronary artery structure end-to-end, which can be used as a fundamental means for automatic detection of coronary artery stenosis, blood flow reserve fraction analysis, and assisting clinicians in diagnosing CHD.


Assuntos
Vasos Coronários , Redes Neurais de Computação , Vasos Coronários/diagnóstico por imagem , Coração , Algoritmos , Atenção , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA