Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2322527121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159371

RESUMO

The southeastward extrusion of Indochina along the Ailao Shan-Red River shear zone (ARSZ) is one of two of the most prominent consequences of the India-Asia collision. This plate-scale extrusion has greatly changed Southeast Asian topography and drainage patterns and effected regional climate and biotic evolution. However, little is known about how Indochina was extruded toward the southeast over time. Here, we sampled 42 plant and animal clades (together encompassing 1,721 species) that are distributed across the ARSZ and are not expected to disperse across long distances. We first assess the possible role of climate on driving the phylogenetic separations observed across the ARSZ. We then investigate the temporal dynamics of the extrusion of Indochina through a multitaxon analysis. We show that the lineage divergences across the ARSZ were most likely associated with the Indochinese extrusion rather than climatic events. The lineage divergences began at ~53 Ma and increased sharply ~35 Ma, with two peaks at ~19 Ma and ~7 Ma, and one valley at ~13 Ma. Our results suggest a two-phase model for the extrusion of Indochina, and in each phase, the extrusion was subject to periods of acceleration and decrease, in agreement with the changes of the India-Asia convergence rate and angle from the early Eocene to the late Miocene. This study highlights that a multitaxon analysis can illuminate the timing of subtle historical events that may be difficult for geological data to pinpoint and can be used to explore other tectonic events.


Assuntos
Filogenia , Animais , Índia , Clima , Plantas/classificação , Rios , Sudeste Asiático , Evolução Biológica
2.
BMC Plant Biol ; 24(1): 202, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509479

RESUMO

BACKGROUND: Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. RESULTS: Owing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. CONCLUSIONS: The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.


Assuntos
Genomas de Plastídeos , Ranunculaceae , Evolução Molecular , Sequência de Bases , Ranunculaceae/genética , Filogenia , Genomas de Plastídeos/genética
3.
Ann Bot ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196797

RESUMO

BACKGROUND AND AIMS: Understanding the biogeographical patterns and processes underlying the distribution of diversity within the Northern Hemisphere has fascinated botanists and biogeographers for over a century. However, as a well-known centre of species diversity in the Northern Hemisphere, whether East Asia acted as a source and/or a sink of plant diversity of the Northern Hemisphere remains unclear. Here, we used Thalictroideae, a subfamily widely distributed in the Northern Hemisphere with the majority of species in East Asia, to investigate the role of East Asia in shaping the biogeographical patterns of the Northern Hemisphere and to test whether East Asia acted as a museum or a cradle for herbaceous taxa. METHODS: Based on six plastid and one nuclear DNA regions, we generated the most comprehensive phylogeny for Thalictroideae including 217 taxa (ca. 66% species) from all ten of the currently recognized genera. Within this phylogenetic framework, we then estimated divergence times, ancestral ranges, and diversification rates. KEY RESULTS: The monophyletic Thalictroideae contains three major clades. All genera with more than one species are strongly supported as monophyletic except for Isopyrum, which is nested in Enemion. The most recent common ancestor of Thalictroideae occurred in East Asia in the late Eocene (ca. 36 Ma). From the Miocene onwards, at least 46 dispersal events were inferred to be responsible for the current distribution of this subfamily. East Asian Thalictroideae lineages experienced a rapid accumulation at ca. 10 Ma. CONCLUSIONS: The biogeographical patterns of Thalictroideae support the "out of and in East Asia" hypothesis, i.e., East Asia is both a source and a sink of biodiversity of the Northern Hemisphere. The global cooling after the middle Miocene Climatic Optimum, combined with the exposed land bridges due to sea-level decline, might have jointly caused the bidirectional plant exchanges between East Asia and other Northern Hemisphere regions. East Asia serves as evolutionary museums and cradles for the diversity of Thalictroideae and likely for other herbaceous lineages.

4.
Cladistics ; 40(4): 391-410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469932

RESUMO

The integration of morphological and molecular data is essential to understand the affinities of fossil taxa and spatio-temporal evolutionary processes of organisms. However, homoplastic morphological characters can mislead the placement of fossil taxa and impact downstream analyses. Here, we provide an example of how to mitigate effectively the effect of morphological homoplasy on the placement of fossil taxa and biogeographic inferences of Cissampelideae. We assembled three data types, morphological data only, morphological data with a molecular scaffold and combined morphological and molecular data. By removing high-level homoplastic morphological data or reweighting the morphological characters, we conducted 15 parsimony, 12 undated Bayesian and four dated Bayesian analyses. Our results show that the 14 selected Cissampelideae fossil taxa are placed poorly when based only on morphological data, but the addition of molecular scaffold and combination of morphological and molecular data greatly improve the resolution of fossil nodes. We raise the monotypic Stephania subg. Botryodiscia to generic status and discover that three fossils previously assigned to Stephania should be members of Diploclisia. The Bayesian tip-dated tree recovered by removing homoplastic morphological characters with a Rescaled Consistency Index <0.25 has the highest stratigraphic fit and consequently generates more reasonable biogeographic reconstruction for Cissampelideae. Cissampelideae began to diversify in Asia in the latest Cretaceous and subsequently dispersed to South America around the Cretaceous-Palaeogene boundary. Two dispersal events from Asia to Africa occurred in the Early Eocene and the Late Eocene-Late Oligocene, respectively. These findings provide guidelines and practical methods for mitigating the effects of homoplastic morphological characters on fossil placements and Bayesian tip-dating, as well as insights into the past tropical floristic exchanges among different continents.


Assuntos
Menispermaceae , Filogenia , Menispermaceae/anatomia & histologia , Menispermaceae/genética , Teorema de Bayes , Filogeografia , Fósseis , Fatores de Tempo
5.
Mol Phylogenet Evol ; 186: 107868, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394080

RESUMO

Rapid diversification of a group is often associated with exploiting an ecological opportunity and/or the evolution of a key innovation. However, how the interplay of such abiotic and biotic factors correlates with organismal diversification has been rarely documented in empirical studies, especially for organisms inhabiting drylands. Fumarioideae is the largest subfamily in Papaveraceae and is mainly distributed in temperate regions of the Northern Hemisphere. Here, we used one nuclear (ITS) and six plastid (rbcL, atpB, matK, rps16, trnL-F, and trnG) DNA sequences to investigate the spatio-temporal patterns of diversification and potential related factors of this subfamily. We first present the most comprehensive phylogenetic analysis of Fumarioideae to date. The results of our integrated molecular dating and biogeographic analyses indicate that the most recent common ancestor of Fumarioideae started to diversify in Asia during the Upper Cretaceous, and then dispersed multiple times out of Asia in the Cenozoic. In particular, we discover two independent dispersal events from Eurasia to East Africa in the late Miocene, suggesting that the Arabian Peninsula might be an important exchange corridor between Eurasia and East Africa in the late Miocene. Within the Fumarioideae, increased speciation rates were detected in two groups, Corydalis and Fumariinae. Corydalis first experienced a burst of diversification in its crown group at âˆ¼ 42 Ma, and further accelerated diversification from the mid-Miocene onwards. During these two periods, Corydalis had evolved diverse life history types, which could have facilitated the colonization of diverse habitats originating from extensive orogenesis in the Northern Hemisphere as well as Asian interior desertification. Fumariinae underwent a burst of diversification at âˆ¼ 15 Ma, which temporally coincides with the increasing aridification in central Eurasia, but is markedly posterior to the shifts in habitat (from moist to arid) and in life history (from perennial to annual) and to range expansion from Asia to Europe, suggesting that Fumariinae species may have been pre-adapted to invade European arid habitats by the acquisition of annual life history. Our study provides an empirical case that documents the importance of pre-adaptation on organismal diversification in drylands and highlights the significant roles of the synergy of abiotic and biotic factors in promoting plant diversification.


Assuntos
Papaveraceae , Filogenia , Ásia , Ecossistema , Sequência de Bases , Filogeografia
6.
Mol Phylogenet Evol ; 186: 107870, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406952

RESUMO

The deciduous broad-leaved forests (DBLFs) cover large temperate and subtropical high-altitude regions in the Northern Hemisphere. They are home to rich biodiversity, especially to numerous endemic and relict species. However, we know little about how this vegetation in the Northern Hemisphere has developed through time. Here, we used Actaea (Ranunculaceae), an herbaceous genus almost exclusively growing in the understory of the Northern Hemisphere DBLFs, to shed light on the historical assembly of this biome in the Northern Hemisphere. We present a complete species-level phylogenetic analysis of Actaea based on five plastid and nuclear loci. Using the phylogenetic framework, we estimated divergence times, ancestral ranges, and diversification rates. Phylogenetic analyses strongly support Actaea as monophyletic. Sections Podocarpae and Oligocarpae compose a clade, sister to all other Actaea. The sister relationship between sections Chloranthae and Souliea is strongly supported. Section Dichanthera is not monophyletic unless section Cimicifuga is included. Actaea originated in East Asia, likely the Qinghai-Tibet Plateau, in the late Paleocene (c. 57 Ma), and subsequently dispersed into North America in the middle Eocene (c. 43 Ma) via the Thulean bridge. Actaea reached Europe twice, Japan twice, and Taiwan once, and all these five colonization events occurred in the late Miocene-early Pliocene, a period when sea level dropped. Actaea began to diversify at c. 43 Ma. The section-level diversification took place at c. 27-37 Ma and the species-level diversification experienced accelerations twice, which occurred at c. 15 Ma and c. 5 Ma, respectively. Our findings suggest that the Northern Hemisphere DBLFs might have risen in the middle Eocene and further diversified in the late Eocene-Oligocene, middle Miocene and early Pliocene, in association with climatic deterioration during these four periods.


Assuntos
Actaea , Ranunculaceae , Filogenia , Filogeografia , Florestas
7.
Mol Phylogenet Evol ; 181: 107712, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693534

RESUMO

Angiosperms, a trigger for the Cretaceous Terrestrial Revolution (KTR), underwent a rapid expansion and occupied all the environments during the Mid-Upper Cretaceous. Yet, Cretaceous biogeographic patterns and processes underlying the distribution of angiosperm diversity in the Northern Hemisphere are still poorly known. Here, we elucidated the biogeographic diversification of the angiosperm family Papaveraceae, an ancient Northern Hemisphere clade characterized by poor dispersal ability and high level of regional endemism. Based on both plastome and multi-locus datasets, we reconstructed a robust time-calibrated phylogeny that includes all currently recognized 45 genera of this family. Within the time-calibrated phylogenetic framework, we conducted 72 biogeographic analyses by testing the sensitivity of uncertainties of area delimitation, maxarea constraints, and the parameters of the model, i.e., j (describing jump-dispersal events) and w (modifying dispersal multiplier matrices), to ancestral range estimations. We also inferred ancestral habitat and ecological niches. Phylogenetic analyses strongly support Papaveraceae as monophyletic. Pteridophylloideae is strongly supported as sister to Hypecoideae-Fumarioideae. Our results indicate that the j parameter and number of predefined areas strongly affect ancestral range estimates, generating questionable ancestral ranges, whereas maxarea constraint and w parameter have no effect and improve model fit. After accounting for these uncertainties, our results indicate that Papaveraceae differentiated in Asian wet forests during the Lower Cretaceous and subsequently occupied the Asian and western North American arid and open areas. Three dispersals from Asia to western North America via the Bering land bridge occurred in the Mid-Upper Cretaceous, largely in agreement with the KTR. Habitat shift and ecological niche divergence resulted in the subsequent disjunctions between Asia and western North America. These findings suggest that the interplay of range expansion and niche divergence-driven vicariance might have shaped Cretaceous biogeographic patterns of angiosperms with Papaveraceae-like ecological requirements and dispersal abilities in the Northern Hemisphere, hence contributing to the knowledge on the geographic expansion of angiosperms during the KTR.


Assuntos
Magnoliopsida , Papaver , Papaveraceae , Filogenia , Filogeografia
8.
Ann Bot ; 131(4): 685-695, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36721969

RESUMO

BACKGROUND AND AIMS: Modern tropical rainforests house the highest biodiversity of Earth's terrestrial biomes and are distributed in three low-latitude areas. However, the biogeographical patterns and processes underlying the distribution of biodiversity among these three areas are still poorly known. Here, we used Tiliacoreae, a tribe of pantropical lianas with a high level of regional endemism, to provide new insights into the biogeographical relationships of tropical rainforests among different continents. METHODS: Based on seven plastid and two nuclear DNA regions, we reconstructed a phylogeny for Tiliacoreae with the most comprehensive sampling ever. Within the phylogenetic framework, we then estimated divergence times and investigated the spatiotemporal evolution of the tribe. KEY RESULTS: The monophyletic Tiliacoreae contain three major clades, which correspond to Neotropical, Afrotropical and Indo-Malesian/Australasian areas, respectively. Both Albertisia and Anisocycla are not monophyletic. The most recent common ancestor of Tiliacoreae occurred in Indo-Malesia, the Afrotropics and Neotropics in the early Eocene, then rapidly diverged into three major clades between 48 and 46 Ma. Three dispersals from Indo-Malesia to Australasia were inferred, one in the middle Eocene and two in the late Oligocene-late Miocene, and two dispersals from the Afrotropics to Indo-Malesia occurred in the late Eocene-Oligocene. CONCLUSIONS: The three main clades of Anisocycla correspond to three distinct genera [i.e. Anisocycla sensu stricto and two new genera (Georgesia and Macrophragma)]. Epinetrum is a member of Albertisia. Our findings highlight that sea-level fluctuations and climate changes in the Cenozoic have played important roles in shaping the current distribution and endemism of Tiliacoreae, hence contributing to the knowledge on the historical biogeography of tropical rainforests on a global scale.


Assuntos
Menispermaceae , Floresta Úmida , Filogenia , Filogeografia , Menispermaceae/genética , Plastídeos/genética
9.
BMC Plant Biol ; 22(1): 507, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316655

RESUMO

BACKGROUND: Mycoheterotrophy is a unique survival strategy adapted to dense forests and has attracted biologists' attention for centuries. However, its evolutionary origin and related plastome degradation are poorly understood. The tribe Neottieae contains various nutrition types, i.e., autotrophy, mixotrophy, and mycoheterotrophy. Here, we present a comprehensive phylogenetic analysis of the tribe based on plastome and nuclear ITS data. We inferred the evolutionary shift of nutrition types, constructed the patterns of plastome degradation, and estimated divergence times and ancestral ranges. We also used an integration of molecular dating and ecological niche modeling methods to investigate the disjunction between the Loess Plateau and Changbai Mountains in Diplandrorchis, a mycoheterotrophic genus endemic to China that was included in a molecular phylogenetic study for the first time. RESULTS: Diplandrorchis was imbedded within Neottia and formed a clade with four mycoheterotrophic species. Autotrophy is the ancestral state in Neottieae, mixotrophy independently originated at least five times, and three shifts from mixotrophy to mycoheterotrophy independently occurred. The five mixotrophic lineages possess all plastid genes or lost partial/all ndh genes, whereas each of the three mycoheterotroph lineages has a highly reduced plastome: one lost part of its ndh genes and a few photosynthesis-related genes, and the other two lost almost all ndh, photosynthesis-related, rpo, and atp genes. These three mycoheterotrophic lineages originated at about 26.40 Ma, 25.84 Ma, and 9.22 Ma, respectively. Diplandrorchis had presumably a wide range in the Pliocene and migrated southward in the Pleistocene. CONCLUSIONS: The Pleistocene climatic fluctuations and the resultant migration resulted in the Loess Plateau-Changbai Mountains disjunction of Diplandrorchis. In the evolution of mycoheterotrophic lineages, the loss of plastid-encoded genes and plastome degradation are staged and irreversible, constraining mycoheterotrophs to inhabit understories with low light levels. Accordingly, the rise of local forests might have promoted the origin of conditions in which mycoheterotrophy is advantageous.


Assuntos
Genomas de Plastídeos , Orchidaceae , Orchidaceae/genética , Filogenia , Genomas de Plastídeos/genética , Processos Heterotróficos/genética , Fotossíntese/genética , Evolução Molecular
10.
Proc Biol Sci ; 288(1948): 20210281, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33823668

RESUMO

The evolutionary history of organisms with poor dispersal abilities usually parallels geological events. Collisions of the Indian and Arabian plates with Eurasia greatly changed Asian topography and affected regional and global climates as well as biotic evolution. However, the geological evolution of Asia related to these two collisions remains debated. Here, we used Eranthis, an angiosperm genus with poor seed dispersal ability and a discontinuous distribution across Eurasia, to shed light on the orogenesis of the Qinghai-Tibetan, Iranian and Mongolian Plateaus. Our phylogenetic analyses show that Eranthis comprises four major geographical clades: east Qinghai-Tibetan Plateau clade (I-1), North Asian clade (I-2), west Qinghai-Tibetan Plateau clade (II-1) and Mediterranean clade (II-2). Our molecular dating and biogeographic analyses indicate that within Eranthis, four vicariance events correlate well with the two early uplifts of the Qinghai-Tibetan Plateau during the Late Eocene and the Oligocene-Miocene boundary and the two uplifts of the Iranian Plateau during the Middle and Late Miocene. The origin and divergence of the Mongolian Plateau taxa are related to the two uplifts of the Mongolian Plateau during the Middle and Late Miocene. Additionally, our results are in agreement with the hypothesis that the central part of Tibet only reached an altitude of less than 2.3 km at approximately 40 Ma. This study highlights that organismal evolution could be related to the formation of the three great Asian plateaus, hence contributing to the knowledge on the timing of the key tectonic events in Asia.


Assuntos
Ranunculaceae , Ásia , Irã (Geográfico) , Filogenia , Filogeografia , Tibet
11.
Mol Phylogenet Evol ; 151: 106910, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32702526

RESUMO

The subtropical evergreen broadleaved forests (EBLFs) inhabit large areas of East Asia and harbor rich biodiversity and high endemism. However, the origin and evolution of biodiversity of East Asian subtropical EBLFs remain poorly understood. Here, we used Mahonia (Berberidaceae), an eastern Asian-western North American disjunct evergreen genus, to obtain new insights into the historical assembly of this biome. We present the most comprehensive phylogenetic analysis of Mahonia do date based on six nuclear and plastid loci. Using the phylogenetic framework, we estimated divergence times, reconstructed ancestral ranges, inferred evolutionary shift of habitats, and estimated diversification rates. Mahonia and each of its two groups (Orientales and Occidentales) are strongly supported as monophyletic. Mahonia originated in western North America during the late Eocene (c. 40.41 Ma) and subsequently dispersed into East Asia prior to the early Oligocene (c. 32.65 Ma). The North Atlantic Land Bridge might have played an important role in population exchanges of Mahonia between East Asia and western North America. The western North American Occidentales began to diversify in summer-dry climates and open landscapes in the early Miocene, whereas the eastern Asian Orientales began to diversify in subtropical EBLFs in the early Miocene and furthermore had a rapid lineage accumulation since the late Miocene. The net diversification rate of Mahonia in eastern Asia appeared to be higher than that in western North America, which is ascribed to lower extinction rates and ecological opportunity. Our findings suggest that western North America is a source of biodiversity of East Asian subtropical EBLFs. This biome in eastern Asia began to rise in the early Miocene and further diversified in the late Miocene, driven by the intensifying East Asian summer monsoon during these two periods.


Assuntos
Evolução Biológica , Florestas , Mahonia/classificação , Mahonia/genética , Filogeografia , Clima Tropical , Ecossistema , Ásia Oriental , Humanos , Filogenia , Fatores de Tempo
12.
Sci China Life Sci ; 67(4): 803-816, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38087029

RESUMO

Living fossils are evidence of long-term sustained ecological success. However, whether living fossils have little molecular changes remains poorly known, particularly in plants. Here, we have introduced a novel method that integrates phylogenomic, comparative genomic, and ecological niche modeling analyses to investigate the rate of molecular evolution of Eupteleaceae, a Cretaceous relict angiosperm family endemic to East Asia. We assembled a high-quality chromosome-level nuclear genome, and the chloroplast and mitochondrial genomes of a member of Eupteleaceae (Euptelea pleiosperma). Our results show that Eupteleaceae is most basal in Ranunculales, the earliest-diverging order in eudicots, and shares an ancient whole-genome duplication event with the other Ranunculales. We document that Eupteleaceae has the slowest rate of molecular changes in the observed angiosperms. The unusually low rate of molecular evolution of Eupteleaceae across all three independent inherited genomes and genes within each of the three genomes is in association with its conserved genome architecture, ancestral woody habit, and conserved niche requirements. Our findings reveal the evolution and adaptation of living fossil plants through large-scale environmental change and also provide new insights into early eudicot diversification.


Assuntos
Evolução Molecular , Magnoliopsida , Filogenia , Ranunculales , Genômica , Magnoliopsida/genética , Ecossistema , Fósseis
14.
Nat Commun ; 14(1): 4021, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463899

RESUMO

The Arctic tundra is a relatively young and new type of biome and is especially sensitive to the impacts of global warming. However, little is known about how the Arctic flora was shaped over time. Here we investigate the origin and evolutionary dynamics of the Arctic flora by sampling 32 angiosperm clades that together encompass 3626 species. We show that dispersal into the Arctic and in situ diversification within the Arctic have similar trends through time, initiating at approximately 10-9 Ma, increasing sharply around 2.6 Ma, and peaking around 1.0-0.7 Ma. Additionally, we discover the existence of a long-term dispersal corridor between the Arctic and western North America. Our results suggest that the initiation and diversification of the Arctic flora might have been jointly driven by progressive landscape and climate changes and sea-level fluctuations since the early Late Miocene. These findings have important conservation implications given rapidly changing climate conditions in the Arctic.


Assuntos
Ecossistema , Tundra , Regiões Árticas , Evolução Biológica , Mudança Climática
15.
Front Plant Sci ; 13: 897843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668810

RESUMO

Thalictrum is a phylogenetically and economically important genus in the family Ranunculaceae, but is also regarded as one of the most challengingly difficult in plants for resolving the taxonomical and phylogenetical relationships of constituent taxa within this genus. Here, we sequenced the complete plastid genomes of two Thalictrum species using Illumina sequencing technology via de novo assembly. The two Thalictrum plastomes exhibited circular and typical quadripartite structure that was rather conserved in overall structure and the synteny of gene order. By updating the previously reported plastome annotation of other nine Thalictrum species, we found that the expansion or contraction of the inverted repeat region affect the boundary of the single-copy regions in Thalictrum plastome. We identified eight highly variable noncoding regions-infA-rps8, ccsA-ndhD, trnSUGA-psbZ, trnHGUG-psbA, rpl16-rps3, ndhG-ndhI, ndhD-psaC, and ndhJ-ndhK-that can be further used for molecular identification, phylogenetic, and phylogeographic in different species. Selective pressure and codon usage bias of all the plastid coding genes were also analyzed for the 11 species. Phylogenetic relationships showed Thalictrum is monophyly and divided into two major clades based on 11 Thalictrum plastomes. The availability of these plastomes offers valuable genetic information for accurate identification of species and taxonomy, phylogenetic resolution, and evolutionary studies of Thalictrum, and should assist with exploration and utilization of Thalictrum plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA