Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(18): 10230-10248, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36124682

RESUMO

Estrogen and estrogen receptor alpha (ERα)-induced gene transcription is tightly associated with ERα-positive breast carcinogenesis. ERα-occupied enhancers, particularly super-enhancers, have been suggested to play a vital role in regulating such transcriptional events. However, the landscape of ERα-occupied super-enhancers (ERSEs) as well as key ERα-induced target genes associated with ERSEs remain to be fully characterized. Here, we defined the landscape of ERSEs in ERα-positive breast cancer cell lines, and demonstrated that bromodomain protein BRD4 is a master regulator of the transcriptional activation of ERSEs and cognate ERα target genes. RET, a member of the tyrosine protein kinase family of proteins, was identified to be a key ERα target gene of BRD4-regulated ERSEs, which, in turn, is vital for ERα-induced gene transcriptional activation and malignant phenotypes through activating the RAS/RAF/MEK2/ERK/p90RSK/ERα phosphorylation cascade. Combination therapy with BRD4 and RET inhibitors exhibited additive effects on suppressing ERα-positive breast cancer both in vitro and in vivo, comparable with that of standard endocrine therapy tamoxifen. Furthermore, combination therapy re-sensitized a tamoxifen-resistant ERα-positive breast cancer cell line to tamoxifen treatment. Taken together, our data uncovered the critical role of a super-enhancer-associated positive feedback loop constituting BRD4/ERα-RET-ERα in ERα-positive breast cancer, and suggested that targeting components in this loop would provide a new therapeutic avenue for treating ERα-positive breast cancer in the clinic.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Retroalimentação Fisiológica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/uso terapêutico , Tamoxifeno/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Sci Rep ; 5: 14244, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26373443

RESUMO

Endometrium receptivity is essential for successful embryo implantation in mammals. However, the lack of genetic information remains an obstacle to understanding the mechanisms underlying the development of a receptive endometrium from the pre-receptive phase in dairy goats. In this study, more than 4 billion high-quality reads were generated and de novo assembled into 102,441 unigenes; these unigenes were annotated using published databases. A total of 3,255 unigenes that were differentially expressed (DEGs) between the PE and RE were discovered in this study (P-values < 0.05). In addition, 76,729-77,102 putative SNPs and 12,837 SSRs were discovered in this study. Bioinformatics analysis of the DEGs revealed a number of biological processes and pathways that are potentially involved in the establishment of the RE, notably including the GO terms proteolysis, apoptosis, and cell adhesion and the KEGG pathways Cell cycle and extracellular matrix (ECM)-receptor interaction. We speculated that ADCY8, VCAN, SPOCK1, THBS1, and THBS2 may play important roles in the development of endometrial receptivity. The de novo assembly provided a good starting point and will serve as a valuable resource for further investigations into endometrium receptivity in dairy goats and future studies on the genomes of goats and other related mammals.


Assuntos
Endométrio/metabolismo , Perfilação da Expressão Gênica , Cabras/genética , Transcriptoma , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único
3.
Gene ; 524(2): 105-13, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23644022

RESUMO

Natriuretic peptides (NPs) are involved in maintaining cardiovascular and fluid homeostasis, regulating reproductive processes and bone growth, and other numerous functions. To better understand the role of NPs in goat (Capra hircus), in the present study, full-length cDNAs of goat Nppa (natriuretic peptide precursor A), Nppb (natriuretic peptide precursor B) and Nppc (natriuretic peptide precursor C), respectively encoding ANP, BNP and CNP, were cloned from adult goat heart and ovary. The putative prepropeptide ANP (prepro-ANP) and prepro-CNP share a high amino acid sequence identity with other species. Real-time PCR showed that Nppa, Nppb and Nppc were widely expressed in adult goat tissues. The mRNA expression of Nppa and Nppb in the heart was extremely higher compared with other tissues. Nppc mRNA expression in the lung and uterus was also higher than in other tissues. The expression of Nppa, Nppb and Nppc genes was examined at different ovarian follicle stages using RT-PCR. The mRNAs of Nppa and Nppb were detected in secondary follicles as well as in COCs (cumulus-oocyte-complexes) and granulosa cells of antral follicles. However, the mRNA expression of Nppc was observed throughout ovarian follicle development, and it was especially higher in granulosa cells of antral follicles. In vitro, stimulating goat granulosa cells with FSH led to an increase in the expression of Nppc by dose- and time-dependent manners and a rapid decline was induced by LH stimulation, but the expression of Nppa and Nppb did not change after FSH or LH treatment. These results suggest that Nppc is a gonadotropin-induced gene in granulosa cells of goat ovary and CNP may be involved in the regulation of ovarian follicle development and oocyte maturation.


Assuntos
Cabras/genética , Peptídeo Natriurético Tipo C/genética , Ovário/citologia , Sequência de Aminoácidos , Animais , Fator Natriurético Atrial/genética , Clonagem Molecular , DNA Complementar/genética , Relação Dose-Resposta a Droga , Feminino , Hormônio Foliculoestimulante/farmacologia , Regulação da Expressão Gênica , Cabras/metabolismo , Células da Granulosa/efeitos dos fármacos , Pulmão/metabolismo , Dados de Sequência Molecular , Peptídeo Natriurético Encefálico/genética , Oócitos/citologia , Oócitos/metabolismo , Ovário/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA