Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 21(1): 558, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276732

RESUMO

BACKGROUND: High resolution 2D whole slide imaging provides rich information about the tissue structure. This information can be a lot richer if these 2D images can be stacked into a 3D tissue volume. A 3D analysis, however, requires accurate reconstruction of the tissue volume from the 2D image stack. This task is not trivial due to the distortions such as tissue tearing, folding and missing at each slide. Performing registration for the whole tissue slices may be adversely affected by distorted tissue regions. Consequently, regional registration is found to be more effective. In this paper, we propose a new approach to an accurate and robust registration of regions of interest for whole slide images. We introduce the idea of multi-scale attention for registration. RESULTS: Using mean similarity index as the metric, the proposed algorithm (mean ± SD [Formula: see text]) followed by a fine registration algorithm ([Formula: see text]) outperformed the state-of-the-art linear whole tissue registration algorithm ([Formula: see text]) and the regional version of this algorithm ([Formula: see text]). The proposed algorithm also outperforms the state-of-the-art nonlinear registration algorithm (original: [Formula: see text], regional: [Formula: see text]) for whole slide images and a recently proposed patch-based registration algorithm (patch size 256: [Formula: see text] , patch size 512: [Formula: see text]) for medical images. CONCLUSION: Using multi-scale attention mechanism leads to a more robust and accurate solution to the problem of regional registration of whole slide images corrupted in some parts by major histological artifacts in the imaged tissue.


Assuntos
Algoritmos , Artefatos , Vasos Sanguíneos/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Vasos Sanguíneos/diagnóstico por imagem , Carcinoma de Células Renais/irrigação sanguínea , Humanos , Imuno-Histoquímica/métodos , Microscopia
3.
JCO Clin Cancer Inform ; 2: 1-12, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30652593

RESUMO

PURPOSE: Nuclear pleomorphic patterns are essential for Fuhrman grading of clear cell renal cell carcinoma (ccRCC). Manual observation of renal histopathologic slides may lead to subjective and inconsistent assessment between pathologists. An automated, image-based system that classifies ccRCC slides by quantifying nuclear pleomorphic patterns in an objective and consistent interpretable fashion can aid pathologists in histopathologic assessment. METHODS: In the current study, histopathologic tissue slides of 59 patients with ccRCC who underwent surgery at Singapore General Hospital were assembled retrospectively. An automated image classification pipeline detects and analyzes prominent nucleoli in ccRCC images to classify them as either low (Fuhrman grade 1 and 2) or high (Fuhrman grade 3 and 4). The pipeline uses machine learning and image pixel intensity-based feature extraction techniques for nuclear analysis. We trained classification systems that concurrently analyze different permutations of multiple prominent nucleoli image patches. RESULTS: Given the parameters for feature combination and extraction, we present experimental results across various configurations for the classification of a given ccRCC histopathologic image. We also demonstrate that the image score used by the pipeline, termed fraction value, is correlated ( R = 0.59) with an existing multigene assay-based scoring system that has previously been demonstrated to be a strong indicator of prognosis in patients with ccRCC. CONCLUSION: The current method provides an objective and fully automated way by which to process pathologic slides. The correlation study with a multigene assay-based scoring system also allows us to provide quantitative interpretation for already established nuclear pleomorphic patterns in ccRCC. This method can be extended to other cancers whose corresponding grading systems use nuclear pattern information.


Assuntos
Carcinoma de Células Renais/patologia , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Renais/patologia , Humanos , Aprendizado de Máquina , Gradação de Tumores , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA