RESUMO
KEY MESSAGE: Thirteen rice CMS lines derived from different cytoplasms were classified into eight groups by PCR amplification on mtDNA. The orf79 gene, which causes Boro II CMS, possibly results in Dian1-CMS. Thirteen rice cytoplasmic male sterile (CMS) lines derived from different cytoplasms are widely used for hybrid rice breeding. Based on 27 loci on mitochondrial DNA, including single nucleotide polymorphisms and segmental sequence variations between typical indica and japonica as well as high-polymorphism segmental sequence variations and single nucleotide polymorphisms among rice CMS lines, the 13 rice CMS lines were classified into eight groups: (I) wild-abortive CMS, Indonesian Shuitiangu CMS, K-CMS, Gang CMS, D-CMS and dwarf abortive CMS; (II) Maxie-CMS; (III) Honglian CMS; (IV) Boro II CMS; (V) Dian1-CMS; (VI) Liao-CMS; (VII) Lead CMS; and (VIII) Chinese wild rice CMS. According to their pollen abortion phenotypes, groups I and II (including 7 CMS lines) were classified as sporophytic CMS lines, the cytoplasmic genetic relationships among which were very close. They could have originated from similar, or even the same, cytoplasm donors. Groups III-VIII (including 6 CMS lines) were categorized as gametophytic CMS lines, the cytoplasms of which differed from one another, with some having relatively far genetic relationships. Dian1-CMS was found to harbor the orf79 gene, which causes Boro II CMS, whereas Liao-CMS had an orf79 structure that does not result in Lead CMS. Therefore, we speculated that orf79 is associated with Dian1-CMS but not with Liao-CMS. The atp6-orf79 structure related to sterility was also found to experience multiple evolutionary turnovers. All sporophytic CMS lines were indica-like. Except the Honglian CMS line, which was indica-like, all gametophytic CMS lines were japonica-like.
Assuntos
DNA Mitocondrial/genética , Oryza/genética , Infertilidade das Plantas , Polimorfismo Genético , Citoplasma/genética , DNA de Plantas/genética , Genoma Mitocondrial , Oryza/classificação , Filogenia , Pólen/genética , Análise de Sequência de DNARESUMO
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the common cause of dementia. The aggregation of beta-amyloid (Aß peptide) leading to excessive neuroinflammation is considered to be the neuropathological hallmark of AD, although the precise mechanisms remain unclear. Oligomerization of these peptides may be associated with their 42 amino acid residue arrangement. However, the process of amyloid plaque formation is still not well known. The protein folding-shape code (PFSC) method is a powerful tool to analyze protein confirmation which could exhibit the local structural folding features in detail. In our study, we utilized the PFSC to analyze Aß peptide in humans and mice and found that mouse Aß42 is less likely to polymerize than human's. Subsequently, we used the PFSC method to analyze the 42 amino acids of Aß, transformed some species in human Aß42 and obtained 7 mutants. We showed that it was not easy to aggregate Aß in mutants. Herein, inflammatory responses were decreased, as indicated by the expression of cytokines. We confirmed that the neurotoxicity of mutant human Aß was decreased by preventing peptide aggregation. This may represent a new therapeutic approach for treating AD.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Humanos , Animais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Doenças NeuroinflamatóriasRESUMO
PURPOSE: Long noncoding RNA 00703 (LINC00703) was found originating from a region downstream of Kruppel-like factor 6 (KLF6) gene, having 2 binding sites for miR-181a. Since KLF6 has been reported as a target of miR-181a in gastric cancer (GC), this study aims to investigate whether LINC00703 regulates the miR-181a/KLF6 axis and plays a functional role in GC pathogenesis. MATERIALS AND METHODS: GC tissues, cell lines, and nude mice were included in this study. RNA binding protein immunoprecipitation (RIP) and pull-down assays were used to evaluate interaction between LINC00703 and miR-181a. Quantitative real-time polymerase chain reaction and western blot were applied for analysis of gene expression at the transcriptional and protein levels. A nude xenograft mouse model was used to determine LINC00703 function in vivo. RESULTS: We revealed that LINC00703 competitively interacts with miR-181a to regulate KLF6. Overexpression of LINC00703 inhibited cell proliferation, migration/invasion, but promoted apoptosis in vitro, and arrested tumor growth in vivo. LINC00703 expression was found to be decreased in GC tissues, which was positively correlated with KLF6, but negatively with the miR-181a levels. CONCLUSIONS: LINC00703 may have an anti-cancer function via modulation of the miR-181a/KLF6 axis. This study also provides a new potential diagnostic marker and therapeutic target for GC treatment.