Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984369

RESUMO

Fatigue cracking is a common form of flexible pavement distress, which generally starts and spreads through bitumen. To address this issue, self-healing elastomer (SHE) modified bitumens were elaborated to assess whether these novel materials can overcome the neat asphalt (NA) fatigue performance and whether the current failure definition, failure criterion, and fatigue-restoration criteria can fit their performance. All bitumens were subjected to short-term and long-term aging. Linear amplitude sweep (LAS) test, LAS with rest period (LASH), and simplified viscoelastic-continuum-damage (S-VECD) model were utilized to appraise the behavior of the mentioned bitumens. The results showed that maximum stored pseudo-strain energy (PSE) and tau (τ) × N (number of loading cycles) failure definitions exhibited high efficiency to accommodate the fatigue life of NA and SHE-modified bitumens. Both failure criteria identified that SHE-modified bitumen (containing 1% of SHE) showed the highest increment of fatigue performance (67.1%) concerning NA. The failure criterion based on total released PSE, in terms of the area under the released PSE curve, was the only failure concept with high efficiency (R2 up to 0.999) to predict asphalt binder fatigue life. As well, the current framework to evaluate bitumen self-restoration failed to fully accommodate asphalt binder behavior, because bitumen with higher restoration could not exhibit greater fatigue performance. Consequently, a new procedure to assess this property including fatigue behavior was proposed, showing consistent results, and confirming that SHE-modified bitumen (containing 1% of SHE) exhibited the highest increment of fatigue performance (154.02%) after application of the rest period. Hence, the optimum SHE content in NA was 1%. Furthermore, it was found that a greater number of loading cycles to failure (Nf) did not ensure better fatigue performance and stored PSE influenced the bitumen fatigue behavior.

2.
Materials (Basel) ; 14(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300688

RESUMO

Composite modification technology is widely used in the materials field. To enhance the property of polyurethane modified asphalt and realize its application in road engineering, the bone glue/polyurethane composite modified asphalt (CMA) was prepared using bone glue, polyurethane, and neat asphalt in this research. The bone glue content ranges 5-10%, that of the polyurethane is 1-5%. The relationship between the modifier's content and the conventional properties and rheological properties of CMA was revealed by response surface methodology (RSM). The CMA performance was further verified under the optimal content of the bone glue and polyurethane. The differences of properties of styrene-butadienestyrene (SBS) modified asphalt mixture, neat asphalt mixture, and bone glue/polyurethane CMA mixture were compared and analyzed by using the pavement performance test. The results showed that the CMA's conventional properties and rheological properties are improved. The optimal bone glue content and polyurethane content determined by RSM are 6.848% and 2.759%, respectively. The low-temperature crack resistance and water stability of the CMA mixture are enhanced, better than neat asphalt mixture and SBS modified asphalt mixture. The CMA mixture's dynamic stability is 85% of SBS modified asphalt mixture, but it is 2.4 times of neat asphalt mixture. The result indicated that the bone glue/polyurethane CMA mixture still has certain advantages of high-temperature stability. In this research, the composite modification of bone glue and polyurethane can significantly enhance the characteristic of asphalt and asphalt mixture and provide a new method for applying and promoting polyurethane modified asphalt in road engineering.

3.
Materials (Basel) ; 13(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036161

RESUMO

Rubberized asphalt (RA) has been successfully applied in road engineering due to its excellent performance; however, the most widely used rubber content is about 20%.To improve the content of waste rubber and ensure its performance, seven rubberized asphalts with different powder content were prepared by high-speed shearing. Firstly, penetration, softening point, and ductility tests were carried out to investigate the conventional physical features of high-content rubberized asphalt (HCRA). Then, the dynamic shear rheometer test (DSR) was conducted to estimate the high-temperature rheological properties. The bending beam rheometer test (BBR) was carried out to evaluate the low-temperature rheological performance. Finally, combined with the macroscopic performance test, the modification mechanism was revealed by the Fourier transform infrared reflection (FTIR) test, and scanning electron microscope (SEM) analysis was used to observe the microscopic appearance before and after aging. The results show that rubberized asphalt has excellent properties in high- and low-temperature conditions, and fatigue resistance is also outstanding compared with neat asphalt. As the crumb rubber content increases, it is evident that the 40% RA performance is the best. The low-temperature properties of HCRA are better than the traditional 20% rubberized asphalt. This study provides a full test foundation for the efficient utilization of HCRA in road engineering.

4.
Materials (Basel) ; 13(15)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722635

RESUMO

Strength and fatigue life are essential parameters of pavement structure design. To accurately determine the pavement structure resistance of rubber asphalt mixture, the strength tests at various temperatures, loading rate, and fatigue tests at different stress levels were conducted in this research. Based on the proposed experiments, the change law of rubber asphalt mixture strength with different temperatures and loading rates was revealed. The phenomenological fatigue equation of rubber asphalt mixture was established. The genetic algorithm optimized backpropagation neural network (GA-BPNN) is highly reliable for optimizing production processes in civil engineering, and it has a remarkable application effect. A GA-BPNN strength and fatigue life prediction model was created in this study. The reliability of the prediction model was verified through experiments. The results showed that the rubber asphalt mixture strength decreases and increases with the increase of temperature and loading rate, respectively. The goodness of fit of the rubber asphalt mixture strength and fatigue life prediction model based on the GA-BPNN could reach 0.989 and 0.998, respectively. The indicators of the fatigue life prediction model are superior to the conventional phenomenological fatigue equation model. The GA-BPNN provides an effective method for predicting the rubber asphalt mixture strength and fatigue life, which significantly improves the accuracy of the resistance design of the rubber asphalt pavement structure.

5.
Materials (Basel) ; 12(12)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234607

RESUMO

According to the theory of molecular design, crumb rubber was grafting activated with acrylamide and then used as asphalt binder modifier. An orthogonal three-factor, three-level test was designed to optimize the preparation process of modified asphalt. Softening point, viscosity, rutting factor, ductility, stiffness modulus and creep speed index were selected as evaluation indicators to study the effects of rubber content, shear time and shear temperature by variance analysis and range analysis. The results show that the rubber content had a significant impact on the performance of modified asphalt with grafting-activated crumb rubber, while the shear temperature and shear time had little effect. The grafting activated crumb rubber content of 20%, shear temperature of 170-190 °C, and shear time of 90 min was determined as the reasonable preparation process. Modified asphalt with common crumb rubber (CRMA) and modified asphalt with grafting activated crumb rubber (A-G-R) were prepared, respectively, using the reasonable process to analyze the influence of grafting activation of crumb rubber. The results indicate that A-G-R had smaller softening point difference, lower segregation index and more stable and uniform dispersed phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA