Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 144, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890462

RESUMO

BACKGROUND: To understand the factors influencing clinical outcomes of severe hand, foot, and mouth diseases (HFMD), and to provide scientific evidence for reducing the mortality risk of severe HFMD. METHODS: From 2014 to 2018, children diagnosed with severe HFMD cases in Guangxi, China, were enrolled in this hospital-based study. The epidemiological data obtained through face-to-face interviews with the parents and guardians. Univariate and multivariate logistics regression models were used to analyze the factors influencing the clinical outcomes of severe HFMD. The impact of the EV-A71 vaccination on inpatient mortality was analyzed by a comparison approach. RESULTS: A total of 1565 severe HFMD cases were enrolled in this survey, including 1474 (94.19%) survival cases and 91 (5.81%) death cases. The multivariate logistic analysis demonstrated that HFMD history of playmates in the last three months, first visit to the village hospital, time from the first visit to admission less than two days, no correct diagnosis for HFMD at the first visit, and having no rash symptoms were the independent risk factors for severe HFMD cases (all p < 0.05). While EV-A71 vaccination was a protective factor (p < 0.05). The EV-A71 vaccination group versus the non-vaccination group showed 2.23% of death in the vaccination group and 7.24% of death in the non-vaccination group. The EV-A71 vaccination protected 70.80% of the death of severe HFMD cases, with an effective index of 4.79. CONCLUSIONS: The mortality risk of severe HFMD in Guangxi was related to playmates had HFMD history in last 3 months, hospital grade, EV-A71 vaccination, patients visit hospital previously, and rash symptom. EV-A71 vaccination can significantly reduce mortality among severe HFMD. The findings are of great significance for the effective prevention and control of HFMD in Guangxi, southern China.


Assuntos
Enterovirus Humano A , Enterovirus , Exantema , Doença de Mão, Pé e Boca , Doenças da Boca , Criança , Humanos , Lactente , Doença de Mão, Pé e Boca/epidemiologia , China/epidemiologia , Hospitais
2.
Small ; 18(19): e2200130, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35403377

RESUMO

Employing low-dimensional perovskite has been proven to be a promising approach to enhance the efficiency and stability of perovskite solar cells. Here, thiopheniformamidine hydrochloride is introduced into CH3 NH3 PbI3 -based printable mesoscopic perovskite solar cells, to form 1D iodide lead thiophenamidine (TFPbI3 ) in situ. This judiciously designed low-dimensional perovskite can effectively passivate the defect of perovskite and induce the perovskite crystals to grow in a direction perpendicular to the substrate. Thus, the obtained 1D@3D perovskite could suppress the charge recombination and promote the charge transfer significantly. Benefiting from its dual effect and robustness, a significantly improved power conversion efficiency of 17.42% is yielded. The authors also develop high-performance printable mesoscopic perovskite solar cells with a champion efficiency approaching 13% for aperture area about 11.8 cm2 , as well as outstanding operational stability, retaining 90% of the original power conversion efficiency after 1000 hours of continuous illumination at the maximum power point in air.

3.
Environ Pollut ; 346: 123596, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369097

RESUMO

Further improving the quality of surface water is becoming more difficult after the control of main point-sources, especially in the complex pollution area with mixed industrial and agricultural productions, whereas the pollution source apportionment might be the key to quantify different pollution sources and developing some effective measures. In this study, a technical framework for source apportionment based on three-dimensional fluorescence and microbial traceability model is developed. Based on screening of the main environmental factors and their spatiotemporal characteristics, potential pollution sources have been tentatively identified. Then, the pollution sources are further tested based on the analysis of fluorescence excitation-emission matrix (EEM) and the similarity of fluorescence components in surface water and potential pollution sources. At the same time, the correlation between microbial species and pollution sources is constructed by analyzing the spatiotemporal characteristics of microbial composition and the response of main species to environmental factors. Therefore, pollution source apportionment is quantified using PCA-APCS-MLR, Fast Expectation-maximization for Microbial Source Tracking (FEAST), and Bayesian community-wide culture-independent microbial source tracking (SourceTracker). PCA-APCS-MLR could not effectively distinguish the contributions of different industrial sources in the complex environment of this study, and the contribution of unknown sources was high (average 39.60%). In contrast, the microbial traceability model can accurately identify the contribution of 7 pollution sources and natural sources, effectively reduce the proportion of unknown sources (average of FEAST is 19.81%, SourceTracker is 16.72%), and show better pollution identification and distribution capabilities. FEAST exhibits a more sensitive potential in source apportionment and shorter calculation time than SourceTracker, thus might be used to guide the precise regional pollution control, especially in the complex pollution environments.


Assuntos
Monitoramento Ambiental , Rios , Monitoramento Ambiental/métodos , Teorema de Bayes , China , Água
4.
ACS Nano ; 17(4): 3776-3785, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779831

RESUMO

The crystalline morphology of perovskite film plays a key role in determining the stability and performance of perovskite solar cells (PSCs). In addition, the work function and conductivity of hole transport layer (HTL) have a great influence on the effciency of PSCs. Here, we develop a synergistic doping strategy to fabricate high-performance inverted PSCs, doping a functional nanographene (C78-AHM) into the poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) HTL, thus forming an HTL with higher conductivity, lower roughness, and frontier energy levels matching the perovskite absorber work function. On this basis, thiosemicarbazide (TSC) was doped into the precursor solution of perovskite as the grain and interface modifier to further improve the crystalline morphology of perovskite film. Compared with the current single passivation method, this codoping strategy can simultaneously reduce the surface and bulk defects of perovskite film and reduce the interface energy barrier. Eventually, high-quality TSC-doped perovskite films based on C78-AHM-doped PTAA HTL are obtained with over 2 µm sized grains, pinhole-free, and improved crystallinity. As a result, this synergistic doping strategy increases the efficiency of the device from 20.27% to 23.28%. Furthermore, the environmental and thermal stabilities of the devices are significantly improved. Therefore, this work provides a simple way for the preparation of other efficient optoelectronic devices.

5.
Chem Commun (Camb) ; 58(64): 8954-8957, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35856771

RESUMO

A H2SO4-Ti3C2Tx ion-gel is in situ fabricated to prevent the restacking of Ti3C2Tx for high-rate micro-supercapacitors. The ion-gel pillared by an electrolyte possesses an enlarged interlayer spacing facilitating ion transport. Furthermore, a bilayer structure is designed with dry Ti3C2Tx for fast electron conduction. The bilayer Ti3C2Tx film shows improved capacitance from 49% to 73% of the initial capacitance at a high scan rate of 200 mV s-1, along with excellent cycle stability. This study opens up a concise and efficient way for high-performance micro-supercapacitors.

6.
Adv Mater ; 34(40): e2205809, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35982543

RESUMO

Here, the authors report a highly efficient integrated ideal-bandgap perovskite/bulk-heterojunction solar cell (IPBSC) with an inverted architecture, featuring a near infrared (NIR) polymer DTBTI-based bulk-heterojunction (BHJ) layer atop guanidinium bromide (GABr)-modified FA0.7 MA0.3 Pb0.7 Sn0.3 I3 perovskite film as the photoactive layer. The IPBSC shows cascade-like energy level alignment between the charge-extractionlayer/perovskite/BHJ and efficient passivation effect of BHJ on perovskite. Thanks to the well-matched energy level alignment and high-quality ideal bandgap-based perovskite film, an efficient charge transfer occurs between the charge-extraction-layer/perovskite/BHJ. Moreover, the NIR polymer DTBTI on the perovskite film leads to an improved NIR light response for the IPBSC. In addition, the O, S and N atoms in the DTBTI polymer yield a strong interaction with perovskite, which is conducive to reducing the defects of the perovskite and suppressing charge recombination. As a result, the solar cell achieves a power conversion efficiency (PCE) of 24.27% (certificated value at 23.4% with 0.283-volt voltage loss), currently the recorded efficiency for both IPBSCs and Pb-Sn alloyed PSCs, and which is over the highest efficiency of perovskite-organic tandem solar cell. Moreover, the thermal, humidity and long-term operational stabilities of the IPBSCs are also significantly improved compared with the control PSCs.

7.
ACS Appl Mater Interfaces ; 14(38): 43246-43256, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36112025

RESUMO

Wide-bandgap perovskites as a class of promising top-cell materials have shown great promise in constructing efficient perovskite-based tandem solar cells, but their intrinsic relatively low radiative efficiency results in a large open-circuit voltage (VOC) deficit and thereby limits the whole device performance. Reducing film flaws or optimizing interfacial energy level alignments in wide-bandgap perovskite devices can efficiently inhibit nonradiative recombination to boost device VOC and efficiency. However, the simultaneous regulation on both sides and their underlying mechanism are less explored. Herein, a bifunctional modification approach is proposed to optimize the wide-bandgap perovskite surface with an ultrathin layer of phenylethylammonium acetate (PEAAc) to synchronously decrease the surface imperfection and mitigate the interfacial energy barrier. This treatment effectively heals under-coordinated surface defects through the formation of chemical interaction between the perovskite and PEAAc, bringing about a much slower charge trapping process and dramatically decreasing nonradiative recombination losses. Meanwhile, the passivation-induced upshifted Fermi level of the perovskite contributes to accelerated electron extraction and larger Fermi-level splitting under illumination. Consequently, the PEAAc-modified wide-bandgap (1.68 eV) device achieves an optimal efficiency of 20.66% with a high VOC of 1.25 V, among the highest reported VOC values for wide-bandgap perovskite devices, enormously outperforming that (18.86% and 1.18 V) of the device without passivation. In addition, the radiative limit of VOC for both cells is determined to be 1.42 V, delivering nonradiative recombination losses of 0.24 and 0.17 V for the control and PEAAc-modified devices, respectively. These results highlight the significance of the bifunctional modification strategy in achieving high-performance wide-bandgap perovskite devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA