Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Phys Chem Chem Phys ; 24(48): 30027-30034, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472373

RESUMO

Transition-metal dichalcogenides (TMDCs) have been modified to show excellent electrocatalytic performance for the CO2 reduction reaction (CO2RR). However, little research has been reported on the edge modification of WS2 and its electrocatalytic CO2RR. In this work, the edge structure of WS2 with W atoms exposed in the top layer was established by density functional theory calculations. Through using WS2-xTM-y (x = 1, 2 or 3; y = 1 or 2; TM = Zn, Fe, Co or Ni) models by doping TM atoms on the top layer of WS2, the effects of dopant species, doping concentration and adsorption sites on their electrocatalytic activity were investigated. Among the models, the active site for the CO2RR is the W atoms. The doping of TM atoms would affect the bond strength between W and S atoms. After the doping of TM atoms in WS2-2TM-1 ones, the electrical conduction of S atoms and the underlying W atoms can greatly be improved. Thus the catalytic activities can be significantly increased, in which the WS2-2Zn-1 model shows the best catalytic activity. The limiting potential (UL) of the CO2RR to CO on the WS2-2Zn-1 model is -0.51 V and the Gibbs energy change (ΔG) for the adsorption of intermediates on the WS2-2Zn-1 model is ΔG(COOH*) = -0.37 and ΔG(CO*) = -0.51 eV, respectively. Solvation correction showed that WS2-2Zn-1 could maintain good catalytic performance in a wide range of pH values. The present results may provide a theoretical basis for the design and synthesis of novel electrocatalysts with high performance for the CO2RR.

2.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364009

RESUMO

The difficulty of exposing active sites and easy recombination of photogenerated carriers have always been two critical problems restricting the photocatalytic activity of g-C3N4. Herein, a simple (NH4)2MoO4-induced one-step calcination method was successfully introduced to transform bulk g-C3N4 into g-C3N4/MoO2 composites with a large specific surface area. During the calcination, with the assistance of NH3 and water vapor produced by ammonium molybdate, the pyrolytical oxidation and depolymerization of a g-C3N4 interlayer were accelerated, finally realizing the exfoliation of the g-C3N4. Furthermore, another pyrolytical product of ammonium molybdate was transformed into MoO2 under an NH3 atmosphere, which was in situ loaded on the surface of a g-C3N4 nanosheet. Additionally, the results of photocatalytic hydrogen evolution under visible light show that the optimal g-C3N4/MoO2 composite has a high specific surface area and much improved performance, which is 4.1 times that of pure bulk g-C3N4. Such performance improvement can be attributed to the full exposure of active sites and the formation of abundant heterojunctions. However, with an increasing feed amount of ammonium molybdate, the oxidation degree of g-C3N4 was enhanced, which would widen the band gap of g-C3N4, leading to a weaker response ability to visible light. The present strategy will provide a new idea for the simple realization of exfoliation and constructing a heterojunction for g-C3N4 simultaneously.

3.
J Environ Sci (China) ; 114: 204-210, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35459485

RESUMO

To investigate the effect of low-level occupational benzene exposure on human peripheral blood leukocyte counts of the workers, domestic and foreign published research data on the change of human peripheral blood leukocyte counts under low-level occupational benzene exposure from January 1990 to December 2020 were collected and analyzed. According to the literature inclusion and exclusion criteria, 18 independent studies from 12 publications were selected for meta-analysis to explore the effect of low-level occupational benzene exposure on human peripheral blood leukocyte counts. The results showed that the peripheral blood leukocyte counts abnormal rates of low-level occupational benzene exposure group were higher than those of the control group, and the difference was statistically significant. Low-level occupational benzene exposure could result in a relatively higher abnormal rate of peripheral blood leukocyte counts in the exposed population, indicating that low-level occupational benzene exposure at workplaces specified by the current benzene occupational exposure limit in China would affect the peripheral blood leukocyte counts of the workers, thus benzene with concentrations under the limit in the ambient air of workplace could be still harmful to the health of the exposed workers. The results of this study could provide a scientific basis for future revision of the benzene occupational exposure limit in China, and could also be a reference for the formulation of environmental standard concerning benzene in China in the future.


Assuntos
Benzeno , Exposição Ocupacional , Benzeno/toxicidade , China , Humanos , Contagem de Leucócitos , Exposição Ocupacional/análise
4.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361672

RESUMO

A novel product consisting of a homogeneous tin oxide nanowall array with abundant oxygen deficiencies and partial Ni-Sn alloying onto a Ni foam substrate was successfully prepared using a facile solvothermal synthesis process with subsequent thermal treatment in a reductive atmosphere. Such a product could be directly used as integrated anodes for supercapacitors, which showed outstanding electrochemical properties with a maximum specific capacitance of 31.50 mAh·g-1 at 0.1 A·g-1, as well as good cycling performance, with a 1.35-fold increase in capacitance after 10,000 cycles. An asymmetric supercapacitor composed of the obtained product as the anode and activated carbon as the cathode was shown to achieve a high potential window of 1.4 V. The excellent electrochemical performance of the obtained product is mainly ascribed to the hierarchical structure provided by the integrated, vertically grown nanowall array on 3D Ni foam, the existence of oxygen deficiency and the formation of Ni-Sn alloys in the nanostructures. This work provides a general strategy for preparing other high-performance metal oxide electrodes for electrochemical applications.

5.
J Nanosci Nanotechnol ; 16(3): 2847-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455719

RESUMO

Vanadium (V, V) and chromium (Cr, VI) are simultaneously photocatalytically reduced to less-toxic V(VI) and Cr(III) by mimetic solar light with ZnWO4 nanoparticles prepared by hydrothermal synthesis. The reduction efficiencies can reach 68.8% for V(V) and 97.3% for Cr(VI) in 3 h, respectively, which are comparable to those by microbial fuel cell technology carried out in over 10 days. The prepared ZnWO4 nanoparticles are characterized by XRD, SEM, EDS, TEM, and Uv-vis-DRS tests. Electrochemical calculation shows high acidity benefits the rapid reduction of V(V) and Cr(VI). In addition, the applied ZnWO4 nanoparticles can be recycled and reused for 5 repeated photocatalytic reduction runs. And after 5 runs, the recycled ZnWO4 nanoparticles can also present good photocatalytic activity with a reduction efficiency of about 60% for V(V) and 90% for Cr(VI). The new procedure on the simultaneous reduction of V(V) and Cr(VI) by photocatalysis may be promisingly applied in contaminated wastewaters, combining the remediation and possible V and Cr recovery.


Assuntos
Cromo/química , Nanoestruturas , Óxidos/química , Tungstênio/química , Vanádio/química , Águas Residuárias/química , Zinco/química , Catálise , Microscopia Eletrônica/métodos , Oxirredução , Processos Fotoquímicos
6.
Opt Lett ; 39(22): 6450-3, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25490491

RESUMO

We report the nonlinear optical (NLO) properties of vertically stood WS2 nanoplates excited by 532-nm picosecond laser light. The nanoplates were synthesized by a no-catalyst thermal evaporation process. Raman spectroscopy and x-ray diffraction pattern indicate that the nanoplates are of high crystal quality. The nanoplates exhibit large nonlinear saturable absorption but negligible nonlinear refraction. Mechanisms of the NLO response are proposed.

7.
ScientificWorldJournal ; 2014: 754890, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24578658

RESUMO

The microstructure and nonohmic properties of SnO2-Ta2O5-ZnO varistor system doped with different amounts of ZrO2 (0-2.0 mol%) were investigated. The proposed samples were sintered at 1400°C for 2 h with conventional ceramic processing method. By X-ray diffraction, SnO2 cassiterite phase was found in all the samples, and no extra phases were identified in the detection limit. The doping of ZrO2 would degrade the densification of the varistor ceramics but inhibit the growth of SnO2 grains. In the designed range, varistors with 1.0 mol% ZrO2 presented the maximum nonlinear exponent of 15.9 and lowest leakage current of 110 µA/cm², but the varistor voltage increased monotonously with the doping amount of ZrO2.


Assuntos
Tantálio/química , Compostos de Estanho/química , Óxido de Zinco/química , Zircônio/química , Temperatura Alta , Microscopia Eletrônica de Varredura , Conformação Molecular , Difração de Raios X
8.
ScientificWorldJournal ; 2014: 673276, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25003143

RESUMO

Ultrafine tungsten carbide-nickel (WC-Ni) cemented carbides with varied fractions of silicon carbide (SiC) nanowhisker (0-3.75 wt.%) were fabricated by spark plasma sintering at 1350°C under a uniaxial pressure of 50 MPa with the assistance of vanadium carbide (VC) and tantalum carbide (TaC) as WC grain growth inhibitors. The effects of SiC nanowhisker on the microstructure and mechanical properties of the as-prepared WC-Ni cemented carbides were investigated. X-ray diffraction analysis revealed that during spark plasma sintering (SPS) Ni may react with the applied SiC nanowhisker, forming Ni2Si and graphite. Scanning electron microscopy examination indicated that, with the addition of SiC nanowhisker, the average WC grain size decreased from 400 to 350 nm. However, with the additional fractions of SiC nanowhisker, more and more Si-rich aggregates appeared. With the increase in the added fraction of SiC nanowhisker, the Vickers hardness of the samples initially increased and then decreased, reaching its maximum of about 24.9 GPa when 0.75 wt.% SiC nanowhisker was added. However, the flexural strength of the sample gradually decreased with increasing addition fraction of SiC nanowhisker.


Assuntos
Compostos Inorgânicos de Carbono/química , Dureza , Nanofibras/química , Níquel/química , Compostos de Silício/química , Compostos de Tungstênio/química , Animais , Nanofibras/ultraestrutura , Gases em Plasma
9.
Front Immunol ; 14: 1339669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259444

RESUMO

This review in sports medicine focuses on the critical role of exosomes in managing chronic conditions and enhancing athletic performance. Exosomes, small vesicles produced by various cells, are essential for cellular communication and transporting molecules like proteins and nucleic acids. Originating from the endoplasmic reticulum, they play a vital role in modulating inflammation and tissue repair. Their significance in sports medicine is increasingly recognized, particularly in healing athletic injuries, improving articular cartilage lesions, and osteoarthritic conditions by modulating cellular behavior and aiding tissue regeneration. Investigations also highlight their potential in boosting athletic performance, especially through myocytes-derived exosomes that may enhance adaptability to physical training. Emphasizing a multidisciplinary approach, this review underlines the need to thoroughly understand exosome biology, including their pathways and classifications, to fully exploit their therapeutic potential. It outlines future directions in sports medicine, focusing on personalized treatments, clinical evaluations, and embracing technological advancements. This research represents a frontier in using exosomes to improve athletes' health and performance capabilities.


Assuntos
Cartilagem Articular , Exossomos , Medicina Esportiva , Humanos , Transporte Biológico , Comunicação Celular
10.
J Colloid Interface Sci ; 652(Pt B): 1394-1404, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659308

RESUMO

Transition metal oxides have been extensively studied due to their large theoretical capacities, but their practical application has been hampered by low electrical conductivity and dramatic volume fluctuation during cycling. In this work, we synthesized Zn3V2O8 material using Zn-V-MOF (metal-organic framework) as a sacrificial template to improve the electrochemical characteristics of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Unique dodecahedral structure, larger specific surface area and higher ability to mitigate volume changes, improve the electrochemical reaction active site while accelerating ion transport. Zn3V2O8 with 2-methylimidazole as a ligand demonstrated a discharge capacity of 1225.9 mAh/g in LIBs and 761.6 mAh/g in SIBs after 300 cycles at 0.2 C. Density functional theory (DFT) calculation illustrates the smaller diffusion barrier energy and higher specific capacity in LIBs that is ascribed to the fact that Li has a smaller size and hence its diffusion is easier. This study may lead to a path for the manufacturing of high-performance LIBs and SIBs.

11.
Materials (Basel) ; 15(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35161163

RESUMO

4145H steel is a commonly used material for downhole tools. However, up to now the wear behavior of 4145H drilling tool steel under real drilling fluid environment conditions is still not clear. In this work, this was investigated using a modified ASTM B611 rubber ring wet grinding test system, in which six kinds of abrasives (talc, dolomite or fluorite, as well as their mixed abrasive with quartz) with metal hardness-to-abrasive hardness ratios (H/HA) ranging from 0.25 to 6.25 were used in the drilling fluid for experiments. The results show that the H/HA value determined the wear mechanism of 4145H steel. When a single soft abrasive was used (with H/HA higher than 1.3-1.5), polishing was the dominantly observed mechanism. While mixed abrasives were applied, a microcutting mechanism due to the ploughing of hard abrasive particles on the steel surface was also observed. The increase in mass fraction of the soft abrasives has little effect on the wear rate of 4145H steel, but its wear rate will significantly increase as the mass fraction of hard abrasives increases. Therefore, in order to extend the life of drilling tools and reduce downhole accidents, the mass fraction of hard particles in the drilling fluid should be reduced as much as possible.

12.
Sci Total Environ ; 806(Pt 1): 150283, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563911

RESUMO

Volatile halogenated hydrocarbons (VHCs) have attracted wide attention in the atmospheric chemistry field since they not only affect the ecological environment but also damage human health. In order to better understand the characteristics, sources and health risks of VHCs in typical urban areas in Beijing, and also verify the achievement in implementing the Montreal Protocol (MP) in Beijing, observational studies on 22 atmospheric VHCs species were conducted during six air pollution episodes from December 2016 to May 2017. The range in daily mixing ratios of the 6 MP-regulated VHCs was 1000-1168 pptv, and the 16 MP-unregulated VHCs was 452-2961 pptv. The 16 MP-unregulated VHCs accounted for a relatively high concentration proportion among the 22 VHCs with a mean of 70.25%. Compared with other regions, the mixing ratios of MP-regulated VHCs were in the middle concentrations. The mixing ratios of the MP-regulated VHCs remained the same concentrations during the air pollution episodes, while the concentrations of MP-unregulated VHCs were generally higher on polluted days than on clean days and increased with the aggravation of the pollution episodes. The mixing ratios of dichlorodifluoromethane and trichlorofluoromethane were higher than Northern Hemisphere (NH) background values, while the mixing ratios of the other 4 MP-regulated VHCs were moderate and similar to the NH background values. All the 9 VHCs with carcinogenic risk might pose potential carcinogenic risks to the exposed populations in the six pollution episodes, while none of the 12 VHCs might pose appreciable non-carcinogenic risks to the exposed populations. Considering the higher concentration levels and higher risk values of 1,2-dichloropropane, 1,2-dichloroethane, carbon tetrachloride and trichloromethane, Beijing needs to further strengthen the control of these VHCs. The analysis of air mass transportation and PMF model showed that regional transportation and leakage of CFCs banks were important sources of VHCs in Beijing, and the contribution of industrial process and solvent usage should not be neglected. The results revealed the effective implementation of the MP in Beijing and its surrounding areas, while further measures are suggested to control the emissions of important VHCs especially from regional transportation and leakage of CFCs banks to reduce the possible health risks to the exposed population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Halogenados , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , China , Monitoramento Ambiental , Humanos , Medição de Risco
13.
Int J Gen Med ; 15: 3951-3964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437351

RESUMO

Background: Aortic dissection (AD) is a rare and lethal disorder with its genetic basis remains largely unknown. Many studies have confirmed that circRNAs play important roles in various physiological and pathological processes. However, the roles of circRNAs in AD are still unclear and need further investigation. The present study aimed to elucidate the underlying molecular mechanisms of circRNAs regulation in AD based on the circRNA-associated competing endogenous RNA (ceRNA) network. Methods: Expression profiles of circRNAs (GSE97745), miRNAs (GSE92427), and mRNAs (GSE52093) were downloaded from Gene Expression Omnibus (GEO) databases, and the differentially expressed RNAs (DERNAs) were subsequently identified by bioinformatics analysis. CircRNA-miRNA-mRNA ceRNA network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to predict the potential functions of circRNA-associated ceRNA network. RNA was isolated from human arterial blood samples after which qRT-PCR was performed to confirm the DERNAs. Results: We identified 14 (5 up-regulated and 9 down-regulated) differentially expressed circRNAs (DEcircRNAs), 17 (8 up-regulated and 9 down-regulated) differentially expressed miRNAs (DEmiRNAs) and 527 (297 up-regulated and 230 down-regulated) differentially expressed mRNAs (DEmRNAs) (adjusted P-value <0.05 and | log2FC | > 1.0). KEGG pathway analysis indicated that DEmRNAs were related to focal adhesion and extracellular matrix receptor interaction signaling pathways. Simultaneously, the present study constructed a ceRNA network based on 1 circRNAs (hsa_circRNA_082317), 1 miRNAs (hsa-miR-149-3p) and 10 mRNAs (MLEC, ENTPD7, SLC16A3, SLC7A8, TBC1D16, PAQR4, MAPK13, PIK3R2, ITGA5, SERPINA1). qRT-PCR demonstrated that hsa_circRNA_082317 and ITGA5 were significantly up-regulated, and hsa-miR-149-3p was dramatically down-regulated in AD (n = 3). Conclusion: This is the first study to demonstrate the circRNA-associated ceRNA network is altered in AD, implying that circRNAs may play important roles in regulating the onset and progression and thus may serve as potential biomarkers for the diagnosis and treatment of AD.

14.
Nanotechnology ; 22(17): 175601, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21411918

RESUMO

Spontaneous formation of 3D tetrapod-shaped CdS nanostructure networks has been achieved for the first time by vapor diffusion-deposition growth from CdS powders. The growth mechanism of the hexagonal and preferentially oriented CdS tetrapod-shaped nanostructures is a combination of the classic vapor-liquid-solid and vapor-solid processes, and the formation of a 3D network results from the spontaneous growths along the longitudinal and across the axial directions of the primarily formed CdS nanorods. Micro-photoluminescence measurements and near-field scanning optical microscopy investigations show that the synthesized CdS tetrapod networks have an excellent luminescence property and can be used as an optical waveguide cavities in which the guided light can be extremely confined.

15.
Adv Sci (Weinh) ; 8(16): e2101866, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34173344

RESUMO

Rechargeable potassium metal batteries are promising energy storage devices with potentially high energy density and markedly low cost. However, eliminating dendrite growth and achieving a stable electrode/electrolyte interface are the key challenges to tackle. Herein, a novel "quasi-liquid" potassium-sodium alloy (KNA) anode comprising only 3.5 wt% sodium (KNA-3.5) is reported, which exhibits outstanding electrochemical performance able to be reversibly cycled at 4 mA cm-2 for 2000 h. Moreover, it is demonstrated that adding a small amount of sodium hexafluorophosphate (NaPF6 ) into the potassium bis(fluorosulfonyl)imide electrolyte allows for the formation of the "quasi-liquid" KNA on electrode surface. Comprehensive experimental studies reveal the formation of an unusual metastable KNa2 phase during plating, which is believed to facilitate simultaneous nucleation and suppress the growth of dendrites, thereby improving the electrode's cycle lifetime. The "quasi-liquid" KNA-3.5 anode demonstrates markedly enhanced electrochemical performance in a full cell when pairing with Prussian blue analogs or sodium rhodizonate dibasic as the cathode material, compared to the pristine potassium anode. Importantly, unlike the liquid KNA reported before, the "quasi-liquid" KNA-3.5 exhibits good processability and can be readily shaped into sheet electrodes, showing substantial promise as a dendrite-free anode in rechargeable potassium metal batteries.

16.
Ann Transl Med ; 9(16): 1317, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532454

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide with high rates of invasiveness and mortality. DAB2IP (DOC2/DAB2 interactive protein) is a member of the RAS-GTPase-activating protein (RAS-GAP) family that shows a suppressive effect on cancer progression, is downregulated in several cancers. However, the role of DAB2IP in CRC remains elusive. METHODS: Expression of DAB2IP was evaluated in human CRC tissues using immunohistochemistry (IHC), quantitative real-time reverse transcription PCR (qRT-PCR) and immunoblotting. Knockdown and overexpression of DAB2IP in CRC cells were achieved by transfecting siRNAs and DAB2IP expression vectors and assessed by qRT-PCR and immunoblotting. CCK-8, colony formation, wound-healing, and transwell assays were used to evaluate CRC cell growth, migration, and sensitivity to chemotherapeutic drugs. The cell cycle was analyzed by propidium iodide (PI) staining and flow cytometry. Cell apoptosis was evaluated by Annexin V-DAPI double staining and flow cytometry. The effect of DAB2IP overexpression on tumor formation was explored by an in vivo tumorigenesis assay. Finally, immunoblotting was performed to examine the molecules related to the action of DAB2IP in CRC. RESULTS: Compared with para-cancer tissues, there was a marked decrease of DAB2IP expression in surgically excised CRCs. In cultured CRC cells, enforced expression of DAB2IP inhibited cell growth and migration and sensitized the cells to DNA-acting cisplatin, oxaliplatin, and doxorubicin but not 5-fluorouracil (5-FU). In contrast, knockdown of DAB2IP produced the opposite effect. Moreover, DAB2IP overexpression hindered tumor growth in vivo. We further found that DAB2IP regulated the expression of cell growth, epithelial-mesenchymal transition (EMT), and apoptosis-related proteins in CRC cells and inhibited the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). CONCLUSIONS: Expression of DAB2IP inhibited CRC cell growth and migration and sensitized CRC cells to chemotherapeutic drugs. Inhibition of the phosphorylation of AKT and ERK is associated with the effects of DAB2IP expression. Restoration of DAB2IP expression may be a novel target for treating CRC.

17.
Nanotechnology ; 21(24): 245603, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20484784

RESUMO

Well-aligned coaxial nanocables, composed of a crystalline alpha-Si(3)N(4) inner core and amorphous SiO(2) outer shell, were prepared on silicon substrates by pyrolysis of a preceramic polymer (perhydropolysilazane) with iron as catalyst. The nanocables have high density, and the longest nanocable can be up to millimeters. Photoluminescence measurement reveals a strong ultraviolet emission band centered at 360 nm and a weaker visible-light emission at 625 nm. The growth mechanism of the nanocables is discussed in detail.

18.
Bioprocess Biosyst Eng ; 33(3): 339-45, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19449037

RESUMO

The effect of both dissolved oxygen (DO) and pH on L: -isoleucine production by batch culture of Brevibacterium lactofermentum was investigated. A two-stage agitation speed control strategy was developed, and the isoleucine production reached 23.3 g L(-1) in a relative short time (52 h), increased by 11.6% compared to the results obtained in the single agitation speed control process. In order to make sure whether the combination of DO and pH control can boost the production by a mutual effect, different control modes were conducted, based on the data obtained from the two-stage agitation speed control strategy and the analysis of kinetics parameters at different pH values. The results showed that the mode of combining two-stage DO with two-stage pH control strategy was the optimal for isoleucine production. The isoleucine production can reach 26.6 g L(-1) at 56 h, increased by 14.3% comparing to that obtained by the single two-stage DO control strategy.


Assuntos
Reatores Biológicos/microbiologia , Biotecnologia/métodos , Brevibacterium/metabolismo , Isoleucina/química , Oxigênio/química , Fermentação , Glucose/química , Concentração de Íons de Hidrogênio , Microbiologia Industrial/métodos , Isoleucina/biossíntese , Cinética , Fatores de Tempo
19.
Drug Des Devel Ther ; 14: 621-633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32103904

RESUMO

PURPOSE: Dysfunction of endothelial cells plays a key role in the pathogenesis of diabetic atherosclerosis. High glucose (HG) has been found as a key factor in the progression of diabetic complications, including atherosclerosis. PI3K/Akt/eNOS signaling pathway has been shown to involve in HG-induced vascular injuries. Hydrogen sulfide (H2S) has been found to exhibit protective effects on HG-induced vascular injuries. Moreover, H2S activates PI3K/Akt/eNOS pathway in endothelial cells. Thus, the present study aimed to determine if H2S exerts protective effects against HG-induced injuries of human umbilical vein endothelial cells (HUVECs) via activating PI3K/Akt/eNOS signaling. MATERIALS AND METHODS: The endothelial protective effects of H2S were evaluated and compared to the controlled groups. Cell viability, cell migration and tube formation were determined by in vitro functional assays; protein levels were evaluated by Western blot assay and ELISA; cell apoptosis was determined by Hoechst 33258 nuclear staining; Reactive oxygen species (ROS) production was evaluated by the ROS detection kit. RESULTS: HG treatment significantly inhibited PI3K/Akt/eNOS signaling in HUVECs, which was partially reversed by the H2S treatment. HG treatment inhibited cell viability of HUVECs, which were markedly prevented by H2S or PI3K agonist Y-P 740. HG treatment also induced HUVEC cell apoptosis by increasing the protein levels of cleaved caspase 3, Bax and Bcl-2, which were significantly attenuated by H2S or 740 Y-P. ROS production and gp91phox protein level were increased by HG treatment in HUVECs and this effect can be blocked by the treatment with H2S or Y-P 740. Moreover, HG treatment increased the protein levels of pro-inflammatory cytokines, caspase-1 and phosphorylated JNK, which was significantly attenuated by H2S or Y-P 740. Importantly, the cytoprotective effect of H2S against HG-induced injury was inhibited by LY294002 (an inhibitor of PI3K/Akt/eNOS signaling pathway). CONCLUSION: The present study demonstrated that exogenous H2S protects endothelial cells against HG-induced injuries by activating PI3K/Akt/eNOS pathway. Based on the above findings, we proposed that reduced endogenous H2S levels and the subsequent PI3K/Akt/eNOS signaling impairment may be the important pathophysiological mechanism underlying hyperglycemia-induced vascular injuries.


Assuntos
Aterosclerose/prevenção & controle , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Substâncias Protetoras/farmacologia , Apoptose/efeitos dos fármacos , Aterosclerose/etiologia , Sobrevivência Celular/efeitos dos fármacos , Complicações do Diabetes/prevenção & controle , Progressão da Doença , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Óxido Nítrico Sintase Tipo III/isolamento & purificação , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Data Brief ; 16: 828-842, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29541670

RESUMO

The data presented in this article are related to a research article entitled 'Novel ß-NiS film modified CdS nanoflowers heterostructure nanocomposite: extraordinarily highly efficient photocatalysts for hydrogen evolution' (Zhang et al., 2018) [1]. In this article, we report original data on the synthesis processes optimization of the proposed nanocomposite on the basis of their optimum photocatalytic performance together with the comparison on the results of literatures and comparative experiments. The composition, microstructure, morphology, photocatalytic hydrogen evolution and photocatalytic stability of the corresponding samples are included in this report. The data are presented in this format in order to facilitate comparison with data from other researchers in the field and understanding the mechanism of similar catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA